Noncomplementary DNA double-strand-break rejoining in bacterial and human cells. 1993

J S King, and E R Valcarcel, and J T Rufer, and J W Phillips, and W F Morgan
Laboratory of Radiobiology and Environmental Health, University of California, San Francisco 94143-0750.

We examined the rejoining of noncomplementary restriction enzyme-produced DNA double-strand breaks in Escherichia coli and in cultured human cells. The enzymes used in this study, ClaI, BamHI and SalI, produce double-strand breaks with 5 protruding single strands. The joining of a ClaI-produced DNA end to a BamHI-produced end or to a SalI-produced end was examined at the DNA sequence level. End rejoining in E.coli was studied by transforming cultures with linear plasmid DNA that was gel purified from restriction digests, and end rejoining in cultured human cells was studied by introducing enzymes into the cells by electroporation. The human cells used contain an Epstein-Barr virus (EBV)-based shuttle vector, pHAZE, that was recovered and introduced into E.coli for further analysis. The major products of DNA end-joining processes observed in linear plasmid-transformed E.coli and in the human cells exposed to restriction enzymes were identical. Furthermore, the deletions observed in both systems and in the spontaneous mutant plasmids in untreated human cells had a common underlying feature: short stretches of directly repeated DNA at the junction sites.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

J S King, and E R Valcarcel, and J T Rufer, and J W Phillips, and W F Morgan
February 1995, British journal of cancer,
J S King, and E R Valcarcel, and J T Rufer, and J W Phillips, and W F Morgan
January 2000, Oncology reports,
J S King, and E R Valcarcel, and J T Rufer, and J W Phillips, and W F Morgan
November 2008, International journal of radiation oncology, biology, physics,
J S King, and E R Valcarcel, and J T Rufer, and J W Phillips, and W F Morgan
January 1996, Advances in space research : the official journal of the Committee on Space Research (COSPAR),
J S King, and E R Valcarcel, and J T Rufer, and J W Phillips, and W F Morgan
January 2008, DNA repair,
J S King, and E R Valcarcel, and J T Rufer, and J W Phillips, and W F Morgan
June 1993, Radiation research,
J S King, and E R Valcarcel, and J T Rufer, and J W Phillips, and W F Morgan
September 2015, Radiation research,
J S King, and E R Valcarcel, and J T Rufer, and J W Phillips, and W F Morgan
July 1996, British journal of cancer,
J S King, and E R Valcarcel, and J T Rufer, and J W Phillips, and W F Morgan
February 1999, Nucleic acids research,
J S King, and E R Valcarcel, and J T Rufer, and J W Phillips, and W F Morgan
March 2005, Cell cycle (Georgetown, Tex.),
Copied contents to your clipboard!