Effect of malaria infection and endotoxin-induced fever on phenacetin O-deethylation by rat liver microsomes. 1993

G O Kokwaro, and A P Glazier, and S A Ward, and A M Breckenridge, and G Edwards
Department of Pharmacology and Therapeutics, University of Liverpool, U.K.

We have investigated the effect of malaria infection with the rodent parasite Plasmodium berghei and fever induced by Escherichia coli endotoxin on the metabolism of phenacetin to paracetamol by rat liver microsomes from young (4 weeks old) male Wistar rats (N = 5 in control and fever groups; N = 10 in malaria-infected group). Following determination of % parasitaemia, the malaria-infected group was divided into a low parasitaemia subgroup (N = 5; mean % parasitaemia = 9.87 +/- 2.6) and a high parasitaemia subgroup (N = 5; mean % parasitaemia = 36.6 +/- 8.1). The control group received normal saline. Total microsomal protein was not significantly affected by fever or malaria infection while cytochrome P450 levels were reduced by approximately 50% in the high parasitaemia subgroup, 20% in the low parasitaemia subgroup and 20% in the endotoxin-treated group. Phenacetin-O-deethylation kinetics were biphasic in both control and malaria-infected rats, but monophasic in endotoxin-treated rats. Total apparent intrinsic clearance (CL(int),total; calculated as Vmax/Km; Vmax is maximum velocity, Km is Michaelis constant) of phenacetin was reduced approximately 6-fold in low parasitaemia, 30-fold in high parasitaemia and 35-fold in fever. There was a poor correlation between CL(int),total and % parasitaemia (r = -0.6). However, log CL(int),total correlated inversely with % parasitaemia (r = -0.9), suggesting that Cl(int),total decreased exponentially with an increase in % parasitaemia. Phenacetin O-deethylation is a marker for cytochrome P4501A2 activity and the results of the present study suggest that both malaria infection and fever might specifically reduce P4501A2 activity in the rat.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008288 Malaria A protozoan disease caused in humans by four species of the PLASMODIUM genus: PLASMODIUM FALCIPARUM; PLASMODIUM VIVAX; PLASMODIUM OVALE; and PLASMODIUM MALARIAE; and transmitted by the bite of an infected female mosquito of the genus ANOPHELES. Malaria is endemic in parts of Asia, Africa, Central and South America, Oceania, and certain Caribbean islands. It is characterized by extreme exhaustion associated with paroxysms of high FEVER; SWEATING; shaking CHILLS; and ANEMIA. Malaria in ANIMALS is caused by other species of plasmodia. Marsh Fever,Plasmodium Infections,Remittent Fever,Infections, Plasmodium,Paludism,Fever, Marsh,Fever, Remittent,Infection, Plasmodium,Plasmodium Infection
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D010615 Phenacetin A phenylacetamide that was formerly used in ANALGESICS but nephropathy and METHEMOGLOBINEMIA led to its withdrawal from the market. (From Smith and Reynard, Textbook of Pharmacology,1991, p431) Acetophenetidin
D010962 Plasmodium berghei A protozoan parasite of rodents transmitted by the mosquito Anopheles dureni. Plasmodium bergheus,berghei, Plasmodium
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal

Related Publications

G O Kokwaro, and A P Glazier, and S A Ward, and A M Breckenridge, and G Edwards
January 1988, Xenobiotica; the fate of foreign compounds in biological systems,
G O Kokwaro, and A P Glazier, and S A Ward, and A M Breckenridge, and G Edwards
November 2011, Drug metabolism and disposition: the biological fate of chemicals,
G O Kokwaro, and A P Glazier, and S A Ward, and A M Breckenridge, and G Edwards
September 1986, British journal of clinical pharmacology,
G O Kokwaro, and A P Glazier, and S A Ward, and A M Breckenridge, and G Edwards
December 1996, Psychopharmacology,
G O Kokwaro, and A P Glazier, and S A Ward, and A M Breckenridge, and G Edwards
September 1981, Biochemical pharmacology,
G O Kokwaro, and A P Glazier, and S A Ward, and A M Breckenridge, and G Edwards
August 1999, Drug metabolism and disposition: the biological fate of chemicals,
G O Kokwaro, and A P Glazier, and S A Ward, and A M Breckenridge, and G Edwards
January 2002, European journal of drug metabolism and pharmacokinetics,
G O Kokwaro, and A P Glazier, and S A Ward, and A M Breckenridge, and G Edwards
December 1979, Chemical & pharmaceutical bulletin,
G O Kokwaro, and A P Glazier, and S A Ward, and A M Breckenridge, and G Edwards
April 1998, British journal of clinical pharmacology,
Copied contents to your clipboard!