Protection of bone marrow stromal cells from the toxic effects of cyclophosphamide in vivo and of ASTA-Z 7557 and etoposide in vitro by ammonium trichloro(dioxyethylene-O-O')tellurate (AS101). 1993

Y Kalechman, and I Sotnik-Barkai, and M Albeck, and B Sredni
Department of Life Sciences, Bar Ilan University, Ramat Gan, Israel.

The immunomodulator AS101 has previously been shown to protect mice from lethal and sublethal doses of cyclophosphamide (CYP). AS101 was also shown to protect BM granulocyte-macrophage colony-forming cells from the toxic effects of ASTA-Z 7557. In the present study we examined the ability of AS101 to protect functional properties of BM stromal cells from the toxic effects of CYP in vivo or ASTA-Z in vitro. The functional properties of stromal cells from CYP-injected mice were tested with respect to stromal cell number and viability as reflected by the number of colony-forming unit fibroblasts, the ability of established stromal layers to secrete colony-stimulating factor and interleukin 6, as well as the capacity to support hemopoietic cells. All of these parameters were tested from day 1 to day 7 after CYP treatment. We demonstrate that all stromal functions are severely damaged following CYP treatment. Pretreatment of mice with 10 micrograms AS101 24 h before injection of 250 mg/kg CYP resulted in a significant amelioration of stromal cell functions as early as 24 h following CYP treatment. In addition we show that prior incubation of BM cells with AS101 protects the development of stromal colony-forming unit fibroblasts from the toxic effects of ASTA-Z, a potent derivative of CYP, and etoposide, a derivative of podophyllotoxin. These results strongly suggest the usefulness of AS101 in counteracting chemotherapy-induced BM microenvironmental suppression and the important role of the compound as an adjunct treatment of cancer when used in combination with CYP. The data also suggest the effectiveness of AS101 in purging bone marrow when used concomitantly with ASTA-Z or etoposide.

UI MeSH Term Description Entries
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003115 Colony-Stimulating Factors Glycoproteins found in a subfraction of normal mammalian plasma and urine. They stimulate the proliferation of bone marrow cells in agar cultures and the formation of colonies of granulocytes and/or macrophages. The factors include INTERLEUKIN-3; (IL-3); GRANULOCYTE COLONY-STIMULATING FACTOR; (G-CSF); MACROPHAGE COLONY-STIMULATING FACTOR; (M-CSF); and GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR; (GM-CSF). MGI-1,Macrophage-Granulocyte Inducer,Colony Stimulating Factor,Colony-Stimulating Factor,MGI-1 Protein,Myeloid Cell-Growth Inducer,Protein Inducer MGI,Cell-Growth Inducer, Myeloid,Colony Stimulating Factors,Inducer, Macrophage-Granulocyte,Inducer, Myeloid Cell-Growth,MGI 1 Protein,MGI, Protein Inducer,Macrophage Granulocyte Inducer,Myeloid Cell Growth Inducer
D003520 Cyclophosphamide Precursor of an alkylating nitrogen mustard antineoplastic and immunosuppressive agent that must be activated in the LIVER to form the active aldophosphamide. It has been used in the treatment of LYMPHOMA and LEUKEMIA. Its side effect, ALOPECIA, has been used for defleecing sheep. Cyclophosphamide may also cause sterility, birth defects, mutations, and cancer. (+,-)-2-(bis(2-Chloroethyl)amino)tetrahydro-2H-1,3,2-oxazaphosphorine 2-Oxide Monohydrate,B-518,Cyclophosphamide Anhydrous,Cyclophosphamide Monohydrate,Cyclophosphamide, (R)-Isomer,Cyclophosphamide, (S)-Isomer,Cyclophosphane,Cytophosphan,Cytophosphane,Cytoxan,Endoxan,NSC-26271,Neosar,Procytox,Sendoxan,B 518,B518,NSC 26271,NSC26271
D005030 Ethylenes Derivatives of ethylene, a simple organic gas of biological origin with many industrial and biological use.
D005047 Etoposide A semisynthetic derivative of PODOPHYLLOTOXIN that exhibits antitumor activity. Etoposide inhibits DNA synthesis by forming a complex with topoisomerase II and DNA. This complex induces breaks in double stranded DNA and prevents repair by topoisomerase II binding. Accumulated breaks in DNA prevent entry into the mitotic phase of cell division, and lead to cell death. Etoposide acts primarily in the G2 and S phases of the cell cycle. Demethyl Epipodophyllotoxin Ethylidine Glucoside,Celltop,Eposide,Eposin,Eto-GRY,Etomedac,Etopos,Etoposide Pierre Fabre,Etoposide Teva,Etoposide, (5S)-Isomer,Etoposide, (5a alpha)-Isomer,Etoposide, (5a alpha,9 alpha)-Isomer,Etoposide, alpha-D-Glucopyranosyl Isomer,Etoposido Ferrer Farma,Exitop,Lastet,NSC-141540,Onkoposid,Riboposid,Toposar,VP 16-213,VP-16,Vepesid,Vépéside-Sandoz,Eto GRY,Etoposide, alpha D Glucopyranosyl Isomer,NSC 141540,NSC141540,Teva, Etoposide,VP 16,VP 16 213,VP 16213,VP16,Vépéside Sandoz,alpha-D-Glucopyranosyl Isomer Etoposide
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D000276 Adjuvants, Immunologic Substances that augment, stimulate, activate, potentiate, or modulate the immune response at either the cellular or humoral level. The classical agents (Freund's adjuvant, BCG, Corynebacterium parvum, et al.) contain bacterial antigens. Some are endogenous (e.g., histamine, interferon, transfer factor, tuftsin, interleukin-1). Their mode of action is either non-specific, resulting in increased immune responsiveness to a wide variety of antigens, or antigen-specific, i.e., affecting a restricted type of immune response to a narrow group of antigens. The therapeutic efficacy of many biological response modifiers is related to their antigen-specific immunoadjuvanticity. Immunoactivators,Immunoadjuvant,Immunoadjuvants,Immunologic Adjuvant,Immunopotentiator,Immunopotentiators,Immunostimulant,Immunostimulants,Adjuvant, Immunologic,Adjuvants, Immunological,Immunologic Adjuvants,Immunological Adjuvant,Adjuvant, Immunological,Immunological Adjuvants

Related Publications

Y Kalechman, and I Sotnik-Barkai, and M Albeck, and B Sredni
August 1994, Current eye research,
Y Kalechman, and I Sotnik-Barkai, and M Albeck, and B Sredni
January 1985, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie,
Y Kalechman, and I Sotnik-Barkai, and M Albeck, and B Sredni
February 2014, International journal of molecular sciences,
Y Kalechman, and I Sotnik-Barkai, and M Albeck, and B Sredni
October 1998, Journal of immunology (Baltimore, Md. : 1950),
Y Kalechman, and I Sotnik-Barkai, and M Albeck, and B Sredni
January 1984, Investigational new drugs,
Y Kalechman, and I Sotnik-Barkai, and M Albeck, and B Sredni
May 1986, Blood,
Y Kalechman, and I Sotnik-Barkai, and M Albeck, and B Sredni
January 1984, Investigational new drugs,
Y Kalechman, and I Sotnik-Barkai, and M Albeck, and B Sredni
June 1989, Experimental hematology,
Copied contents to your clipboard!