Activation of neuropeptide Y1 and neuropeptide Y2 receptors by substituted and truncated neuropeptide Y analogs: identification of signal epitopes. 1993

L Grundemar, and J L Krstenansky, and R Håkanson
Department of Pharmacology, University of Lund, Sweden.

Neuropeptide Y (NPY-(1-36)) acts on Y1 and Y2 receptors at the sympathetic neuroeffector junction. Various truncated NPY analogs were tested in the isolated guinea-pig caval vein where NPY is a vasoconstrictor (Y1 receptors) and in isolated rat vas deferens, by monitoring the suppression of electrically evoked contractions (Y2 receptors). The aim of this study was to define which parts of the NPY-(1-36) molecule were required to activate these receptors. NPY-(1-36), [Pro34]NPY and [Glu16,Ser18,Ala22,Leu28,31]NPY (ESALL-NPY), the latter being an analog with increased alpha-helicity in the 14-31 region, evoked vasoconstriction with similar potency and efficacy. Cyclic as well as linear NPY analogs having the 4 to 7 N-terminal amino acid residues linked to the 9 to 19 C-terminal residues by an 8-aminooctanoic acid (Aoc) residue were 25-50 times less potent than NPY-(1-36) itself. In the cyclic analogs, a disulfide bond was introduced to bring the N- and C-termini close together. Linear Aoc-2-27-NPY was virtually inactive. The Y1 receptor needs an intact N-terminal end of NPY in order to become fully activated. The requirements for the C-terminus are less stringent, since substitutions in this part of the molecule resulted in fully active analogs. The central portion of the molecule may impose steric constraints on the N- and C-terminal ends, thereby facilitating Y1 receptor activation, but it does not seem to be essential for receptor recognition. NPY-(2-36) and NPY-(5-36) were only slightly less potent than the parent molecule in suppressing electrically evoked twitches in the vas deferens.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009478 Neuropeptide Y A 36-amino acid peptide present in many organs and in many sympathetic noradrenergic neurons. It has vasoconstrictor and natriuretic activity and regulates local blood flow, glandular secretion, and smooth muscle activity. The peptide also stimulates feeding and drinking behavior and influences secretion of pituitary hormones. Neuropeptide Y-Like Immunoreactive Peptide,Neuropeptide Tyrosine,Neuropeptide Y Like Immunoreactive Peptide,Tyrosine, Neuropeptide
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog

Related Publications

L Grundemar, and J L Krstenansky, and R Håkanson
March 1989, FEBS letters,
L Grundemar, and J L Krstenansky, and R Håkanson
May 2002, Peptides,
L Grundemar, and J L Krstenansky, and R Håkanson
January 1990, Annals of the New York Academy of Sciences,
L Grundemar, and J L Krstenansky, and R Håkanson
December 1996, European journal of pharmacology,
L Grundemar, and J L Krstenansky, and R Håkanson
January 1990, Annals of the New York Academy of Sciences,
L Grundemar, and J L Krstenansky, and R Håkanson
December 2019, Journal of psychopharmacology (Oxford, England),
L Grundemar, and J L Krstenansky, and R Håkanson
October 2015, General and comparative endocrinology,
L Grundemar, and J L Krstenansky, and R Håkanson
February 2003, Peptides,
L Grundemar, and J L Krstenansky, and R Håkanson
April 1997, Neuropeptides,
L Grundemar, and J L Krstenansky, and R Håkanson
January 1995, Biopolymers,
Copied contents to your clipboard!