Mutational analysis of segmental stabilization of transcripts from the Zymomonas mobilis gap-pgk operon. 1993

G Burchhardt, and K F Keshav, and L Yomano, and L O Ingram
Department of Microbiology and Cell Science, University of Florida, Gainesville 32611.

In Zymomonas mobilis, the genes encoding glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase are transcribed together from the gap-pgk operon. However, higher levels of the former enzyme are present in the cytoplasm because of increased stability of a 5' segment containing the gap coding region. This segment is bounded by an upstream untranslated region which can be folded into many stem-loop structures and a prominent intercistronic stem-loop. Mutations eliminating a proposed stem-loop in the untranslated region or the intercistronic stem-loop resulted in a decrease in the stability and pool size of the 5' gap segment. Site-specific mutations in the unpaired regions of both of these stems also altered the message pools. Elimination of the intercistronic stem appeared to reduce the endonucleolytic cleavage within the pgk coding region, increasing the stability and abundance of the full-length message. DNA encoding the prominent stem-loop at the 3' end of the message was shown to be a transcriptional terminator both in Z. mobilis and in Escherichia coli. This third stem-loop region (part of the transcriptional terminator) was required to stabilize the full-length gap-pgk message.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D010735 Phosphoglycerate Kinase An enzyme catalyzing the transfer of a phosphate group from 3-phospho-D-glycerate in the presence of ATP to yield 3-phospho-D-glyceroyl phosphate and ADP. EC 2.7.2.3. Kinase, Phosphoglycerate
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005987 Glyceraldehyde-3-Phosphate Dehydrogenases Enzymes that catalyze the dehydrogenation of GLYCERALDEHYDE 3-PHOSPHATE. Several types of glyceraldehyde-3-phosphate-dehydrogenase exist including phosphorylating and non-phosphorylating varieties and ones that transfer hydrogen to NADP and ones that transfer hydrogen to NAD. GAPD,Glyceraldehyde-3-Phosphate Dehydrogenase,Glyceraldehydephosphate Dehydrogenase,Phosphoglyceraldehyde Dehydrogenase,Triosephosphate Dehydrogenase,Dehydrogenase, Glyceraldehyde-3-Phosphate,Dehydrogenase, Glyceraldehydephosphate,Dehydrogenase, Phosphoglyceraldehyde,Dehydrogenase, Triosephosphate,Dehydrogenases, Glyceraldehyde-3-Phosphate,Glyceraldehyde 3 Phosphate Dehydrogenase
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D017353 Gene Deletion A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus. Deletion, Gene,Deletions, Gene,Gene Deletions

Related Publications

G Burchhardt, and K F Keshav, and L Yomano, and L O Ingram
January 1991, Journal of bacteriology,
G Burchhardt, and K F Keshav, and L Yomano, and L O Ingram
December 1989, Journal of bacteriology,
G Burchhardt, and K F Keshav, and L Yomano, and L O Ingram
April 1988, Journal of bacteriology,
G Burchhardt, and K F Keshav, and L Yomano, and L O Ingram
September 1989, Journal of bacteriology,
G Burchhardt, and K F Keshav, and L Yomano, and L O Ingram
February 2015, Genetics and molecular research : GMR,
G Burchhardt, and K F Keshav, and L Yomano, and L O Ingram
April 1988, European journal of biochemistry,
G Burchhardt, and K F Keshav, and L Yomano, and L O Ingram
January 1995, Analytical biochemistry,
G Burchhardt, and K F Keshav, and L Yomano, and L O Ingram
January 1990, Biotechnology advances,
G Burchhardt, and K F Keshav, and L Yomano, and L O Ingram
June 2017, Applied microbiology and biotechnology,
Copied contents to your clipboard!