Effects of halothane, enflurane, and isoflurane on laryngeal receptors in dogs. 1993

T Nishino, and J W Anderson, and G Sant'Ambrogio
Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77555.

The effects of halothane, enflurane, and isoflurane on laryngeal receptors were investigated in 6 anesthetized dogs breathing spontaneously through a tracheostomy. Single unit action potentials were recorded from the peripheral cut end of the superior laryngeal nerve (SLN) while different concentrations of volatile anesthetics (1.25, 2.5, 5.0%) were administered in the expiratory direction at a constant air-flow (6 l/min) for 1 min through the functionally isolated upper airway. A total of 21 respiratory-modulated mechanoreceptors, 18 "irritant" receptors, and 7 cold receptors were studied. The overall results obtained from the 16 respiratory-modulated mechanoreceptors challenged with the 3 anesthetic gases disclosed a prevalent inhibitory effect and halothane proved to be the most effective of the 3 gases. The activity during both the inspiratory and expiratory phase was significantly reduced only by halothane (inspiratory phase, P < 0.01; expiratory phase, P < 0.05), while neither isoflurane nor enflurane caused significant changes in receptor activity. Of the 18 irritant receptors, 14 receptors increased their activity in a dose-related manner in response to one or more of the anesthetics although the effect of halothane was more pronounced than those of enflurane and isoflurane. All of the 7 cold receptors consistently increased their activity in a dose-related manner in response to halothane whereas 3 of 7 receptors were insensitive to enflurane and 4 of 7 receptors were insensitive to isoflurane. Our results indicate that, while all three commonly used anesthetics can have an effect on different types of laryngeal receptors, the effects of halothane are more pronounced than those of the other two gases in terms of changes in receptor activity.

UI MeSH Term Description Entries
D007530 Isoflurane A stable, non-explosive inhalation anesthetic, relatively free from significant side effects.
D007823 Laryngeal Nerves Branches of the VAGUS NERVE. The superior laryngeal nerves originate near the nodose ganglion and separate into external branches, which supply motor fibers to the cricothyroid muscles, and internal branches, which carry sensory fibers. The RECURRENT LARYNGEAL NERVE originates more caudally and carries efferents to all muscles of the larynx except the cricothyroid. The laryngeal nerves and their various branches also carry sensory and autonomic fibers to the laryngeal, pharyngeal, tracheal, and cardiac regions. Laryngeal Nerve, Superior,Laryngeal Nerve,Laryngeal Nerves, Superior,Nerve, Laryngeal,Nerve, Superior Laryngeal,Nerves, Laryngeal,Nerves, Superior Laryngeal,Superior Laryngeal Nerve,Superior Laryngeal Nerves
D007830 Larynx A tubular organ of VOICE production. It is located in the anterior neck, superior to the TRACHEA and inferior to the tongue and HYOID BONE. Anterior Commissure, Laryngeal,Anterior Commissure, Larynx,Laryngeal Anterior Commissure,Laryngeal Posterior Commissure,Posterior Commissure, Laryngeal,Posterior Commissure, Larynx,Anterior Commissures, Laryngeal,Anterior Commissures, Larynx,Commissure, Laryngeal Anterior,Commissure, Laryngeal Posterior,Commissure, Larynx Anterior,Commissure, Larynx Posterior,Commissures, Laryngeal Anterior,Commissures, Laryngeal Posterior,Commissures, Larynx Anterior,Commissures, Larynx Posterior,Laryngeal Anterior Commissures,Laryngeal Posterior Commissures,Larynx Anterior Commissure,Larynx Anterior Commissures,Larynx Posterior Commissure,Larynx Posterior Commissures,Posterior Commissures, Laryngeal,Posterior Commissures, Larynx
D008297 Male Males
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D011984 Sensory Receptor Cells Specialized afferent neurons capable of transducing sensory stimuli into NERVE IMPULSES to be transmitted to the CENTRAL NERVOUS SYSTEM. Sometimes sensory receptors for external stimuli are called exteroceptors; for internal stimuli are called interoceptors and proprioceptors. Nerve Endings, Sensory,Neurons, Sensory,Neuroreceptors,Receptors, Neural,Neural Receptors,Receptors, Sensory,Sensory Neurons,Sensory Receptors,Nerve Ending, Sensory,Neural Receptor,Neuron, Sensory,Neuroreceptor,Receptor Cell, Sensory,Receptor Cells, Sensory,Receptor, Neural,Receptor, Sensory,Sensory Nerve Ending,Sensory Nerve Endings,Sensory Neuron,Sensory Receptor,Sensory Receptor Cell
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004737 Enflurane An extremely stable inhalation anesthetic that allows rapid adjustments of anesthesia depth with little change in pulse or respiratory rate. Alyrane,Enfran,Enlirane,Ethrane,Etran
D005260 Female Females
D006221 Halothane A nonflammable, halogenated, hydrocarbon anesthetic that provides relatively rapid induction with little or no excitement. Analgesia may not be adequate. NITROUS OXIDE is often given concomitantly. Because halothane may not produce sufficient muscle relaxation, supplemental neuromuscular blocking agents may be required. (From AMA Drug Evaluations Annual, 1994, p178) 1,1,1-Trifluoro-2-Chloro-2-Bromoethane,Fluothane,Ftorotan,Narcotan

Related Publications

T Nishino, and J W Anderson, and G Sant'Ambrogio
August 1997, American journal of veterinary research,
T Nishino, and J W Anderson, and G Sant'Ambrogio
December 1994, Journal of cardiothoracic and vascular anesthesia,
T Nishino, and J W Anderson, and G Sant'Ambrogio
April 1978, American journal of veterinary research,
T Nishino, and J W Anderson, and G Sant'Ambrogio
April 1987, British journal of anaesthesia,
T Nishino, and J W Anderson, and G Sant'Ambrogio
February 1992, Anesthesiology,
T Nishino, and J W Anderson, and G Sant'Ambrogio
April 1983, Anesthesiology,
T Nishino, and J W Anderson, and G Sant'Ambrogio
May 1989, European journal of anaesthesiology,
T Nishino, and J W Anderson, and G Sant'Ambrogio
December 1990, British journal of anaesthesia,
Copied contents to your clipboard!