Demonstration of a novel apamin-insensitive calcium-activated K+ channel in mouse pancreatic B cells. 1993

C Ammälä, and K Bokvist, and O Larsson, and P O Berggren, and P Rorsman
Department of Medical Biophysics, Göteborgs Universitet, Sweden.

The whole-cell configuration of the patch-clamp technique was used to characterize the biophysical and pharmacological properties of an oscillating K(+)-current that can be induced by intracellular application of GTP[gamma S] in mouse pancreatic B cells (Ammälä et al. 1991). These K+ conductance changes are evoked by periodic increases in the cytoplasmic Ca2+ concentration ([Ca2+]i) and transiently repolarize the B cell, thus inhibiting action-potential firing and giving rise to a bursting pattern. GTP[gamma S]-evoked oscillations in K+ conductance were reversibly suppressed by a high (300 microM) concentration of carbamylcholine. By contrast, alpha 2-adrenoreceptor stimulation by 20 microM clonidine did not interfere with the oscillatory behaviour but evoked a small sustained outward current. At 0 mV membrane potential, the oscillating K(+)-current elicited by GTP[gamma S] was highly sensitive to extracellular tetraethylammonium (TEA; 70% block by 1 mM). The TEA-resistant component, which carried approximately 80% of the current at -40 mV, was affected neither by apamin (1 microM) nor by tolbutamide (500 microM). The current evoked by internal GTP[gamma S] was highly selective for K+, as demonstrated by a 51-mV change in the reversal potential for a sevenfold change in [K+]o. Stationary fluctuation analysis indicated a unitary conductance of 0.5 pS when measured with symmetric (approximately 140 mM) KCl solutions. The estimated single-channel conductance with physiological ionic gradients is 0.1 pS. The results indicate the existence of a novel Ca(2+)-gated K+ conductance in pancreatic B cells. Activation of this K+ current may contribute to the generation of the oscillatory electrical activity characterizing the B cell at intermediate glucose concentrations.

UI MeSH Term Description Entries
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001030 Apamin A highly neurotoxic polypeptide from the venom of the honey bee (Apis mellifera). It consists of 18 amino acids with two disulfide bridges and causes hyperexcitability resulting in convulsions and respiratory paralysis.
D013757 Tetraethylammonium Compounds Quaternary ammonium compounds that consist of an ammonium cation where the central nitrogen atom is bonded to four ethyl groups. Tetramon,Tetrylammonium,Compounds, Tetraethylammonium
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D016244 Guanosine 5'-O-(3-Thiotriphosphate) Guanosine 5'-(trihydrogen diphosphate), monoanhydride with phosphorothioic acid. A stable GTP analog which enjoys a variety of physiological actions such as stimulation of guanine nucleotide-binding proteins, phosphoinositide hydrolysis, cyclic AMP accumulation, and activation of specific proto-oncogenes. GTP gamma S,Guanosine 5'-(gamma-S)Triphosphate,gamma-Thio-GTP,GTPgammaS,Guanosine 5'-(3-O-Thio)Triphosphate,gamma S, GTP,gamma Thio GTP

Related Publications

C Ammälä, and K Bokvist, and O Larsson, and P O Berggren, and P Rorsman
July 1997, Endocrinology,
C Ammälä, and K Bokvist, and O Larsson, and P O Berggren, and P Rorsman
September 1983, FEBS letters,
C Ammälä, and K Bokvist, and O Larsson, and P O Berggren, and P Rorsman
December 1985, Biophysical journal,
C Ammälä, and K Bokvist, and O Larsson, and P O Berggren, and P Rorsman
July 1986, The Journal of biological chemistry,
C Ammälä, and K Bokvist, and O Larsson, and P O Berggren, and P Rorsman
June 1989, Journal of protein chemistry,
C Ammälä, and K Bokvist, and O Larsson, and P O Berggren, and P Rorsman
December 1997, Brain research,
C Ammälä, and K Bokvist, and O Larsson, and P O Berggren, and P Rorsman
June 1990, The Journal of physiology,
C Ammälä, and K Bokvist, and O Larsson, and P O Berggren, and P Rorsman
July 1997, Experimental neurology,
C Ammälä, and K Bokvist, and O Larsson, and P O Berggren, and P Rorsman
February 1993, Journal of neurophysiology,
C Ammälä, and K Bokvist, and O Larsson, and P O Berggren, and P Rorsman
November 1990, FEBS letters,
Copied contents to your clipboard!