Collateral axons of cholinergic pontine neurones projecting to midline, mediodorsal and parafascicular thalamic nuclei in the rat. 1993

R F Bolton, and J Cornwall, and O T Phillipson
Department of Anatomy, School of Medical Sciences, Bristol, UK.

The organization of collateral axons projecting from neurones in the pontine laterodorsal tegmental nucleus (LDTg) has been examined using combinations of retrograde neuronal tracers with immunocytochemical markers for the acetylcholine-synthesizing enzyme choline acetyltransferase (CHAT), focussing on projections to the midline, mediodorsal and parafascicular thalamic nuclei and the ventral tegmental area. 25-59% of LDTg neurones projecting to the mediodorsal nucleus provided collaterals to the midline nuclei. Virtually all (87-96%) of these double retrogradely labelled neurones appeared cholinergic. 9-18% of LDTg neurones projecting to the parafascicular nuclei also provided a collateral to the midline nuclei and 50-78% of these double retrogradely labelled neurones stained for CHAT. 26-29% of the single LDTg neurones which projected collaterals to both the mediodorsal and midline nuclei, were found to project a third collateral to the ventral tegmental area. These anatomical findings, taken together with functional evidence, suggest that cholinergic terminals arising from LDTg are involved in coordinating thalamic mechanisms of brain state control; and in regulating dopaminergic pathways, both directly and via the thalamus.

UI MeSH Term Description Entries
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010275 Parasympathetic Nervous System The craniosacral division of the autonomic nervous system. The cell bodies of the parasympathetic preganglionic fibers are in brain stem nuclei and in the sacral spinal cord. They synapse in cranial autonomic ganglia or in terminal ganglia near target organs. The parasympathetic nervous system generally acts to conserve resources and restore homeostasis, often with effects reciprocal to the sympathetic nervous system. Nervous System, Parasympathetic,Nervous Systems, Parasympathetic,Parasympathetic Nervous Systems,System, Parasympathetic Nervous,Systems, Parasympathetic Nervous
D011149 Pons The front part of the hindbrain (RHOMBENCEPHALON) that lies between the MEDULLA and the midbrain (MESENCEPHALON) ventral to the cerebellum. It is composed of two parts, the dorsal and the ventral. The pons serves as a relay station for neural pathways between the CEREBELLUM to the CEREBRUM. Pons Varolii,Ponte,Pons Varolius,Pontes,Varolii, Pons,Varolius, Pons
D002795 Choline O-Acetyltransferase An enzyme that catalyzes the formation of acetylcholine from acetyl-CoA and choline. EC 2.3.1.6. Choline Acetylase,Choline Acetyltransferase,Acetylase, Choline,Acetyltransferase, Choline,Choline O Acetyltransferase,O-Acetyltransferase, Choline
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013787 Thalamic Nuclei Several groups of nuclei in the thalamus that serve as the major relay centers for sensory impulses in the brain. Nuclei, Thalamic

Related Publications

R F Bolton, and J Cornwall, and O T Phillipson
May 1972, Physiology & behavior,
R F Bolton, and J Cornwall, and O T Phillipson
August 2008, Brain structure & function,
R F Bolton, and J Cornwall, and O T Phillipson
January 1997, Brain, behavior and evolution,
R F Bolton, and J Cornwall, and O T Phillipson
June 2002, The Journal of comparative neurology,
R F Bolton, and J Cornwall, and O T Phillipson
December 2000, The Journal of comparative neurology,
Copied contents to your clipboard!