Influence of conjugation of doxorubicin to transferrin on the iron uptake by K562 cells via receptor-mediated endocytosis. 1993

A Bérczi, and M Ruthner, and V Szüts, and M Fritzer, and E Schweinzer, and H Goldenberg
Institute of Biophysics, Hungarian Academy of Sciences, Szeged.

The influence of conjugation of doxorubicin to holotransferrin on the receptor-mediated endocytosis of and on the iron uptake from transferrin was studied using K562 cells. 125I-labelled transferrin and doxorubicin-transferrin conjugates were used in the binding, dissociation, and ligand-exchange experiments at 0 degree C, and 59Fe,125I-labelled (double-labelled) ligands were used in the endocytosis, iron uptake, and recycling experiments at 37 degrees C. The binding affinity of conjugates was about half of that of transferrin. Binding of 125I-labelled ligands was blocked by both unlabelled ligands to the same degree, however, it was not blocked at all by an 8000-fold excess of doxorubicin. After saturation bindings, slightly more 125I-labelled conjugates dissociated from the surface of cells than transferrin. Exchange of 125I-labelled ligands for unlabelled ligands resulted in different EC50 values (defined as the concentration of unlabelled ligand at which half as much radioligand is exchanged for unlabelled ligand as would be exchanged at infinitely high concentration of unlabelled ligand under similar assay conditions). While transferrin exchanged transferrin with an EC50 value close to the binding affinity, conjugates exchanged conjugates with much lower efficiency. The heterolog exchange experiments yielded EC50 values inbetween the two extrema. For studying iron uptake, K562 cells were loaded with the double-labelled ligands either at 37 degrees C (endosome-loading only) or at 0 degree C (surface-loading only). Results obtained for the endocytosis of, the iron uptake from, and the recycling of double-labelled ligands indicate that (a) the rate of iron uptake is smaller from conjugates than from transferrin, (b) there are at least two parallel recycling processes for both ligand.receptor complexes, and (c) each time constant characterizing the different steps of iron uptake via receptor-mediated endocytosis is smaller for conjugates than for transferrin (or, the half times characterizing the different steps are higher for conjugates than for transferrin). Endocytosis and iron uptake were unaffected by free doxorubicin (12.5 microM) or colchicine (1 mM). Benzyl alcohol (30 mM) slowed down the rate of both endocytosis and iron uptake, while dithiothreitol (5 mM) decreased the rate of iron uptake and increased the rate of endocytosis. N-Ethylmaleimide (1 mM) completely stopped both endocytosis and iron uptake. The results suggest that the binding of conjugates to the surface of cells is governed by the binding of the transferrin part of conjugates to the transferrin receptor. However, conjugation of doxorubicin to transferrin seems to influence all properties of transferrin.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D011990 Receptors, Transferrin Membrane glycoproteins found in high concentrations on iron-utilizing cells. They specifically bind iron-bearing transferrin, are endocytosed with its ligand and then returned to the cell surface where transferrin without its iron is released. Transferrin Receptors,Transferrin Receptor,Receptor, Transferrin
D004317 Doxorubicin Antineoplastic antibiotic obtained from Streptomyces peucetius. It is a hydroxy derivative of DAUNORUBICIN. Adriamycin,Adriablastin,Adriablastine,Adriblastin,Adriblastina,Adriblastine,Adrimedac,DOXO-cell,Doxolem,Doxorubicin Hexal,Doxorubicin Hydrochloride,Doxorubicin NC,Doxorubicina Ferrer Farm,Doxorubicina Funk,Doxorubicina Tedec,Doxorubicine Baxter,Doxotec,Farmiblastina,Myocet,Onkodox,Ribodoxo,Rubex,Urokit Doxo-cell,DOXO cell,Hydrochloride, Doxorubicin,Urokit Doxo cell
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014168 Transferrin An iron-binding beta1-globulin that is synthesized in the LIVER and secreted into the blood. It plays a central role in the transport of IRON throughout the circulation. A variety of transferrin isoforms exist in humans, including some that are considered markers for specific disease states. Siderophilin,Isotransferrin,Monoferric Transferrins,Serotransferrin,Transferrin B,Transferrin C,beta 2-Transferrin,beta-1 Metal-Binding Globulin,tau-Transferrin,Globulin, beta-1 Metal-Binding,Metal-Binding Globulin, beta-1,Transferrins, Monoferric,beta 1 Metal Binding Globulin,beta 2 Transferrin,tau Transferrin
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

A Bérczi, and M Ruthner, and V Szüts, and M Fritzer, and E Schweinzer, and H Goldenberg
April 1983, The Journal of biological chemistry,
A Bérczi, and M Ruthner, and V Szüts, and M Fritzer, and E Schweinzer, and H Goldenberg
February 1994, The Biochemical journal,
A Bérczi, and M Ruthner, and V Szüts, and M Fritzer, and E Schweinzer, and H Goldenberg
December 1990, The Biochemical journal,
A Bérczi, and M Ruthner, and V Szüts, and M Fritzer, and E Schweinzer, and H Goldenberg
January 2006, Blood cells, molecules & diseases,
A Bérczi, and M Ruthner, and V Szüts, and M Fritzer, and E Schweinzer, and H Goldenberg
September 1995, The Journal of biological chemistry,
A Bérczi, and M Ruthner, and V Szüts, and M Fritzer, and E Schweinzer, and H Goldenberg
October 1982, Proceedings of the National Academy of Sciences of the United States of America,
A Bérczi, and M Ruthner, and V Szüts, and M Fritzer, and E Schweinzer, and H Goldenberg
January 1998, Metal ions in biological systems,
A Bérczi, and M Ruthner, and V Szüts, and M Fritzer, and E Schweinzer, and H Goldenberg
November 1984, The Journal of biological chemistry,
A Bérczi, and M Ruthner, and V Szüts, and M Fritzer, and E Schweinzer, and H Goldenberg
October 1993, The Journal of biological chemistry,
A Bérczi, and M Ruthner, and V Szüts, and M Fritzer, and E Schweinzer, and H Goldenberg
August 2005, Biochimica et biophysica acta,
Copied contents to your clipboard!