Regenerating axons are not required to induce the formation of a Schwann cell cable in a silicone chamber. 1993

L R Williams, and N A Azzam, and A A Zalewski, and R N Azzam
CNS Diseases Research, Upjohn Company, Kalamazoo, Michigan 49001.

After suture of proximal and distal nerve stumps into the ends of a silicone chamber, a tissue cable forms inside the chamber through which axons regenerate. Schwann cells are a critical cellular component of the cable because in their absence axons fail to regenerate into the cable. In this study, we sought to determine whether axons were needed to induce the formation of a Schwann cell-containing cable. Transected stumps of sciatic nerves of adult rats were sutured into the ends of silicone chambers prefilled with phosphate-buffered saline or dialyzed plasma, leaving a 10-mm interstump gap. In order to eliminate any axonal influence in the chamber, the proximal sciatic nerve was further transected, ligated, and reflected, leaving a 4-mm piece of denervated nerve in the proximal chamber. A tissue cable formed at 4 weeks only in those chambers prefilled with dialyzed plasma. Light and electron microscopy revealed a central core of Schwann cells and fibroblasts within the cable that were collectively surrounded by a circumferential layer of fibroblasts and collagen. Blood vessels were randomly located throughout the cable. The Schwann cells extended numerous processes that were confined within a basal lamina-like membrane. Many of these processes contained microtubules and resembled unmyelinated axons. The ultrastructure of the processes, however, differed from that of axons in that some of the processes were in direct contact with the basal lamina of the Schwann cells and not surrounded by any other cell extensions. However, since these processes neither stained with silver nor disappeared after transection of the nerves entering or leaving the chamber, we conclude that they are not axons but in fact Schwann cell processes. In other animals bearing 4-week cables, the reflected nerve stump was reattached to the nerve piece in the proximal end of the chamber. Four weeks later, all the cables and varying lengths of the distal nerve trunks were filled with numerous myelinated and unmyelinated axons. The Schwann cell cable that forms within a dialyzed plasma prefilled chamber presents a useful system for basic research concerning the molecular mechanisms of Schwann cell or Schwann cell-axonal interactions and for applied research involving the clinical repair of human peripheral nerve injuries. Since a cable formed by our surgical method supports axonal regeneration, it has the potential to eliminate the need for a nerve graft to repair a gap in a nerve that requires delayed surgical intervention.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009462 Neurology A medical specialty concerned with the study of the structures, functions, and diseases of the nervous system.
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D003714 Denervation The resection or removal of the nerve to an organ or part. Laser Neurectomy,Neurectomy,Peripheral Neurectomy,Radiofrequency Neurotomy,Denervations,Laser Neurectomies,Neurectomies,Neurectomies, Laser,Neurectomies, Peripheral,Neurectomy, Laser,Neurectomy, Peripheral,Neurotomies, Radiofrequency,Neurotomy, Radiofrequency,Peripheral Neurectomies,Radiofrequency Neurotomies
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012583 Schwann Cells Neuroglial cells of the peripheral nervous system which form the insulating myelin sheaths of peripheral axons. Schwann Cell,Cell, Schwann,Cells, Schwann
D012584 Sciatic Nerve A nerve which originates in the lumbar and sacral spinal cord (L4 to S3) and supplies motor and sensory innervation to the lower extremity. The sciatic nerve, which is the main continuation of the sacral plexus, is the largest nerve in the body. It has two major branches, the TIBIAL NERVE and the PERONEAL NERVE. Nerve, Sciatic,Nerves, Sciatic,Sciatic Nerves
D012828 Silicones A broad family of synthetic organosiloxane polymers containing a repeating silicon-oxygen backbone with organic side groups attached via carbon-silicon bonds. Depending on their structure, they are classified as liquids, gels, and elastomers. (From Merck Index, 12th ed) Silicone

Related Publications

L R Williams, and N A Azzam, and A A Zalewski, and R N Azzam
August 1985, Brain research,
L R Williams, and N A Azzam, and A A Zalewski, and R N Azzam
October 1992, Brain research,
L R Williams, and N A Azzam, and A A Zalewski, and R N Azzam
November 2013, The Journal of neuroscience : the official journal of the Society for Neuroscience,
L R Williams, and N A Azzam, and A A Zalewski, and R N Azzam
April 2000, Journal of neurocytology,
L R Williams, and N A Azzam, and A A Zalewski, and R N Azzam
April 2003, Glia,
L R Williams, and N A Azzam, and A A Zalewski, and R N Azzam
October 2011, Glia,
L R Williams, and N A Azzam, and A A Zalewski, and R N Azzam
January 1991, Glia,
L R Williams, and N A Azzam, and A A Zalewski, and R N Azzam
October 2014, Nature neuroscience,
L R Williams, and N A Azzam, and A A Zalewski, and R N Azzam
January 1991, Acta neuropathologica,
L R Williams, and N A Azzam, and A A Zalewski, and R N Azzam
May 1999, Journal of reconstructive microsurgery,
Copied contents to your clipboard!