Epithelial cell-fibroblast interactions: modulation of extracellular matrix proteins in cultured oral cells. 1993

L T Hou, and E J Kollar, and J A Yaeger
Department of Biostructure and Function School of Dental Medicine, University of Connecticut, Farmington.

A model system involving co-cultures of human gingival or periodontal ligament fibroblasts with mouse epithelial root sheath cells or human gingival epithelial cells was used to study epithelial cell-fibroblast interactions. Double-labeled immunofluorescence and microfluorometry were used to investigate the expression of extracellular matrix molecules of collagen type I (collagen I), type III (collagen III) and fibronectin in fibroblasts. When fibroblasts from either source were cultured alone, the fluorescence for collagen I and fibronectin ranged from strongly positive to almost negative. Collagen III staining was relatively weak compared with that of collagen I. After 2-3 days of co-culture, gingival fibroblasts and ligament fibroblasts adjacent to the mouse sheath cells exhibited enhanced intracellular fluorescence for collagen I and fibronectin. Very little change was observed for collagen III. Gingival fibroblasts cultured with gingival epithelial cells showed increased fluorescence for collagen I but decreased fluorescence for fibronectin. In contrast, the fluorescence intensity for both collagen I and fibronectin in ligament fibroblasts were reduced after 3 days of co-culture with gingival epithelial cells. Ultrastructural changes in fibroblasts co-cultured with mouse root sheath cells included increased Golgi cisternae and vesicles and an increased abundance of rough endoplasmic reticulum, polyribosomes, secretory vesicles and pinocytotic vesicles. Thus, the expression of extracellular matrix proteins and the metabolic activity of fibroblasts can be modulated by oral epithelial cells.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D010513 Periodontal Ligament The fibrous CONNECTIVE TISSUE surrounding the TOOTH ROOT, separating it from and attaching it to the alveolar bone (ALVEOLAR PROCESS). Alveolodental Ligament,Alveolodental Membrane,Gomphosis,Alveolodental Ligaments,Alveolodental Membranes,Gomphoses,Ligament, Alveolodental,Ligament, Periodontal,Membrane, Alveolodental,Periodontal Ligaments
D010873 Pinocytosis The engulfing of liquids by cells by a process of invagination and closure of the cell membrane to form fluid-filled vacuoles. Pinocytoses
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D005353 Fibronectins Glycoproteins found on the surfaces of cells, particularly in fibrillar structures. The proteins are lost or reduced when these cells undergo viral or chemical transformation. They are highly susceptible to proteolysis and are substrates for activated blood coagulation factor VIII. The forms present in plasma are called cold-insoluble globulins. Cold-Insoluble Globulins,LETS Proteins,Fibronectin,Opsonic Glycoprotein,Opsonic alpha(2)SB Glycoprotein,alpha 2-Surface Binding Glycoprotein,Cold Insoluble Globulins,Globulins, Cold-Insoluble,Glycoprotein, Opsonic,Proteins, LETS,alpha 2 Surface Binding Glycoprotein

Related Publications

L T Hou, and E J Kollar, and J A Yaeger
December 1996, Nihon Kyobu Shikkan Gakkai zasshi,
L T Hou, and E J Kollar, and J A Yaeger
October 1998, Annals of the New York Academy of Sciences,
L T Hou, and E J Kollar, and J A Yaeger
August 2008, Proceedings of the American Thoracic Society,
L T Hou, and E J Kollar, and J A Yaeger
January 1995, Experimental nephrology,
L T Hou, and E J Kollar, and J A Yaeger
March 2016, Current pathobiology reports,
L T Hou, and E J Kollar, and J A Yaeger
January 2009, Tsitologiia,
L T Hou, and E J Kollar, and J A Yaeger
October 2013, Differentiation; research in biological diversity,
L T Hou, and E J Kollar, and J A Yaeger
June 1999, Nippon Ganka Gakkai zasshi,
L T Hou, and E J Kollar, and J A Yaeger
April 1991, Biochemical Society transactions,
L T Hou, and E J Kollar, and J A Yaeger
January 2001, In vitro cellular & developmental biology. Animal,
Copied contents to your clipboard!