Basic fibroblast growth factor expression is required for clonogenic growth of human glioma cells. 1993

R S Morrison, and S Giordano, and F Yamaguchi, and S Hendrickson, and M S Berger, and K Palczewski
R.S. Dow Neurological Sciences Institute and Comprehensive Cancer Center, Good Samaritan Hospital and Medical Center, Portland, Oregon.

Basic fibroblast growth factor (bFGF) is a heparin-binding protein, expressing potent mitogenic and angiogenic properties. Elevated levels of bFGF have been identified in human gliomas and glioma cell lines, suggesting that bFGF expression is involved in the aberrant growth patterns associated with these tumors. In the present study, the influence of bFGF on additional parameters of glioma cell malignancy was evaluated utilizing three distinct methods to suppress bFGF expression or activity including antisense oligonucleotide primers, a neutralizing monoclonal antibody or an inhibitor of the agonist action of bFGF: (1) The addition of 30 microM bFGF-specific antisense oligonucleotide primer to the human glioma cell line SNB-19 resulted in a 55% inhibition in colony formation in soft agar. This effect was dose-dependent and specific, as sense strand primer was ineffective in suppressing growth. In addition to exhibiting fewer colonies, antisense treatment significantly altered colony morphology. (2) SNB-19 cell growth in culture was suppressed in the presence of a neutralizing bFGF-specific monoclonal antibody. (3) Inositolhexakisphosphate, a newly identified antagonist of FGF binding and activity, suppressed SNB-19 cell growth in soft agar culture. These results demonstrate that bFGF may regulate glioma growth and progression independent of its role in tumor angiogenesis and that bFGF release or secretion may be required for these actions.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D016222 Fibroblast Growth Factor 2 A single-chain polypeptide growth factor that plays a significant role in the process of WOUND HEALING and is a potent inducer of PHYSIOLOGIC ANGIOGENESIS. Several different forms of the human protein exist ranging from 18-24 kDa in size due to the use of alternative start sites within the fgf-2 gene. It has a 55 percent amino acid residue identity to FIBROBLAST GROWTH FACTOR 1 and has potent heparin-binding activity. The growth factor is an extremely potent inducer of DNA synthesis in a variety of cell types from mesoderm and neuroectoderm lineages. It was originally named basic fibroblast growth factor based upon its chemical properties and to distinguish it from acidic fibroblast growth factor (FIBROBLAST GROWTH FACTOR 1). Basic Fibroblast Growth Factor,Fibroblast Growth Factor, Basic,HBGF-2,Cartilage-Derived Growth Factor,Class II Heparin-Binding Growth Factor,FGF-2,FGF2,Fibroblast Growth Factor-2,Heparin-Binding Growth Factor Class II,Prostate Epithelial Cell Growth Factor,Prostatropin,Cartilage Derived Growth Factor,FGF 2

Related Publications

R S Morrison, and S Giordano, and F Yamaguchi, and S Hendrickson, and M S Berger, and K Palczewski
October 1995, Molecular and cellular endocrinology,
R S Morrison, and S Giordano, and F Yamaguchi, and S Hendrickson, and M S Berger, and K Palczewski
December 1993, Experimental cell research,
R S Morrison, and S Giordano, and F Yamaguchi, and S Hendrickson, and M S Berger, and K Palczewski
August 1998, Journal of periodontal research,
R S Morrison, and S Giordano, and F Yamaguchi, and S Hendrickson, and M S Berger, and K Palczewski
October 1991, Cell,
R S Morrison, and S Giordano, and F Yamaguchi, and S Hendrickson, and M S Berger, and K Palczewski
November 1987, Investigative ophthalmology & visual science,
R S Morrison, and S Giordano, and F Yamaguchi, and S Hendrickson, and M S Berger, and K Palczewski
December 1990, Journal of neuroscience research,
R S Morrison, and S Giordano, and F Yamaguchi, and S Hendrickson, and M S Berger, and K Palczewski
July 2004, Basic research in cardiology,
R S Morrison, and S Giordano, and F Yamaguchi, and S Hendrickson, and M S Berger, and K Palczewski
January 1991, Annals of the New York Academy of Sciences,
R S Morrison, and S Giordano, and F Yamaguchi, and S Hendrickson, and M S Berger, and K Palczewski
February 1997, Journal of neurochemistry,
R S Morrison, and S Giordano, and F Yamaguchi, and S Hendrickson, and M S Berger, and K Palczewski
January 1994, Neurosurgery,
Copied contents to your clipboard!