Activity of mouse liver glutathione S-transferases toward trans,trans-muconaldehyde and trans-4-hydroxy-2-nonenal. 1993

D Goon, and M Saxena, and Y C Awasthi, and D Ross
Molecular Toxicology and Environmental Health Sciences Program, School of Pharmacy, University of Colorado Health Sciences Center, Denver 80262.

This study investigated the catalytic activities of hepatic glutathione S-transferase (GST) isoenzymes isolated from CD-1 mice toward two activated alkenals of toxicological relevance: trans,trans-muconaldehyde (MA), a putative myelotoxic metabolite of benzene, and trans-4-hydroxy-2-nonenal (HNE), a highly reactive lipid peroxidation product. The activity toward 1-chloro-2,4-dinitrobenzene (CDNB) was also determined. Four isoenzymes with pI values of 9.8, 8.7, 6.4, and 5.7 were each isolated from male and female mice. The isoenzymes with pI values of 8.7 and 6.4 are pi and mu class GSTs, respectively, whereas the pI 9.8 and 5.7 GSTs are both alpha class isoenzymes. CDNB activity was greatest in the pi (pI 8.7) isoenzyme of both sexes. In addition, the CDNB activity of the pi (pI 8.7) isoenzyme from males was markedly greater than the corresponding GST from female mouse liver. In contrast to CDNB, both MA and HNE were better substrates for the acidic alpha (pI 5.7) and mu (pI 6.4) GSTs, whereas minimal activity toward either alkenal was detected in the pi (pI 8.7) and alpha (pI 9.8) isoenzymes. Maximum activity toward MA and HNE was exhibited by the alpha (pI 5.7) isoenzyme of both sexes. The level of HNE activity observed with the alpha (pI 5.7) isoenzyme was five- to sixfold greater than that reported previously for any mouse GST isoenzyme. Moreover, the specific activities of the female alpha (pI 5.7) isoenzyme toward both HNE and MA were markedly greater than those of the corresponding isoenzyme from males. A similar gender-specific difference was noted in the activity of the mu (pI 6.4) isoenzyme toward HNE, but not toward MA. These results show that both MA and HNE are substrates for the alpha (pI 5.7) and mu (pI 6.4) GSTs of murine liver, with maximum activity toward both activated alkenals exhibited by the alpha (pI 5.7) isozyme. In addition, evidence is presented that demonstrates a female-dominant sex difference in the activity of the alpha (pI 5.7) isoenzyme toward MA and HNE, which contrasts sharply with the male-dominant activity of pi class GSTs toward CDNB. These results are consistent with the hypothesis that alpha and mu class GSTs are critical detoxication enzymes in female mouse liver, whereas pi-class GST isozymes predominate in the liver of male mice.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D004137 Dinitrochlorobenzene A skin irritant that may cause dermatitis of both primary and allergic types. Contact sensitization with DNCB has been used as a measure of cellular immunity. DNCB is also used as a reagent for the detection and determination of pyridine compounds. 1-Chloro-2,4-Dinitrobenzene,2,4-Dinitrochlorobenzene,Benzene, 1-Chloro-2,4-Dinitro-,Chlorodinitrobenzene,DNCB,1 Chloro 2,4 Dinitrobenzene,2,4 Dinitrochlorobenzene
D005260 Female Females
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D000447 Aldehydes Organic compounds containing a carbonyl group in the form -CHO. Aldehyde
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012737 Sex Factors Maleness or femaleness as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or effect of a circumstance. It is used with human or animal concepts but should be differentiated from SEX CHARACTERISTICS, anatomical or physiological manifestations of sex, and from SEX DISTRIBUTION, the number of males and females in given circumstances. Factor, Sex,Factors, Sex,Sex Factor

Related Publications

D Goon, and M Saxena, and Y C Awasthi, and D Ross
June 2008, The Journal of biological chemistry,
D Goon, and M Saxena, and Y C Awasthi, and D Ross
July 1997, Lipids,
D Goon, and M Saxena, and Y C Awasthi, and D Ross
October 2004, Organic letters,
D Goon, and M Saxena, and Y C Awasthi, and D Ross
April 2012, Journal of mass spectrometry : JMS,
D Goon, and M Saxena, and Y C Awasthi, and D Ross
January 1991, Free radical biology & medicine,
D Goon, and M Saxena, and Y C Awasthi, and D Ross
January 1995, Investigative ophthalmology & visual science,
D Goon, and M Saxena, and Y C Awasthi, and D Ross
September 2010, Biochemistry. Biokhimiia,
D Goon, and M Saxena, and Y C Awasthi, and D Ross
August 1981, The Journal of biological chemistry,
D Goon, and M Saxena, and Y C Awasthi, and D Ross
January 2009, The Biochemical journal,
Copied contents to your clipboard!