Electrophoretic abnormalities of lysosomal enzymes in mucolipidosis fibroblast lines. 1977

M J Champion, and T B Shows

Electrophoretic properties of eight lysosomal hydrolases and 36 nonlysosomal enzymes were investigated in cultured fibroblasts from children with the inherited storage disease mucolipidosis II (ML II); fibroblasts from a child with a related disorder, mucolipidosis III (ML III); and two obligate heterozygous cell lines from parents of a ML II child. Cell homogenates of ML II fibroblast lines showed altered mobilities for lysosomal beta-hexosaminidase, acid phosphatase2, and alpha-mannosidase and deficient activity for the esterase-A4 and lysosomal alpha-mannosidase-B electrophoretic phenotypes. Altered mobility was also detected for the nonlysosomal enzyme adenosine deaminase-d. Deficient activities of other lysosomal enzymes were observed as previously reported. In a single ML III fibroblast line, only beta-hexosaminidase showed an abnormal electrophoretic pattern suggesting a difference between these cells and ML II fibroblasts. Thirty-five nonlysosomal enzymes associated with other cellular organelles and metabolic pathways were electrophoretically normal in all mucolipidosis cell lines. Heterozygous ML II cells showed normal expression for all enzymes. Two major patterns of altered lysosomal enzymes and adenosine deaminase were demonstrated in ML II cell lines, suggesting that at least two genetic forms of this disorder may exist. Neuraminidase treatment of ML II homogenates converted altered forms of acid phosphatase2 and adenosine deaminase-d and in two ML II lines, recovered the previously undetected lysosomal alpha-mannosidase band. These results are consistent with the mucolipidosis defect(s) being associated with abnormal post-translatinal processing of multiple lysosomal enzymes and adenosine deaminase-d.

UI MeSH Term Description Entries
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D008361 Mannosidases Glycoside hydrolases that catalyze the hydrolysis of alpha or beta linked MANNOSE. Mannosidase
D009081 Mucolipidoses A group of inherited metabolic diseases characterized by the accumulation of excessive amounts of acid mucopolysaccharides, sphingolipids, and/or glycolipids in visceral and mesenchymal cells. Abnormal amounts of sphingolipids or glycolipids are present in neural tissue. INTELLECTUAL DISABILITY and skeletal changes, most notably dysostosis multiplex, occur frequently. (From Joynt, Clinical Neurology, 1992, Ch56, pp36-7) Cherry Red Spot Myoclonus Syndrome,Ganglioside Sialidase Deficiency Disease,I-Cell Disease,Lipomucopolysaccharidosis,Mucolipidosis,Myoclonus Cherry Red Spot Syndrome,Pseudo-Hurler Polydystrophy,Sialidosis,Cherry Red Spot-Myoclonus Syndrome,Deficiency Disease, Ganglioside Sialidase,Glycoprotein Neuraminidase Deficiency,Inclusion Cell Disease,Mucolipidosis I,Mucolipidosis II,Mucolipidosis III,Mucolipidosis III Alpha Beta,Mucolipidosis IIIa,Mucolipidosis IV,Mucolipidosis Type 1,Mucolipidosis Type I,Mucolipidosis Type II,Mucolipidosis Type III,Mucolipidosis Type IV,Myoclonus-Cherry Red Spot Syndrome,Psuedo-Hurler Disease,Sialolipidosis,Type I Mucolipidosis,Type II Mucolipidosis,Type III Mucolipidosis,Type IV Mucolipidosis,Deficiencies, Glycoprotein Neuraminidase,Deficiency, Glycoprotein Neuraminidase,Glycoprotein Neuraminidase Deficiencies,I Cell Disease,I-Cell Diseases,Inclusion Cell Diseases,Lipomucopolysaccharidoses,Mucolipidoses, Type I,Mucolipidoses, Type II,Mucolipidoses, Type III,Mucolipidoses, Type IV,Mucolipidosis, Type I,Mucolipidosis, Type II,Mucolipidosis, Type III,Mucolipidosis, Type IV,Polydystrophy, Pseudo-Hurler,Pseudo Hurler Polydystrophy,Psuedo Hurler Disease,Psuedo-Hurler Diseases,Sialidoses,Sialolipidoses,Type I Mucolipidoses,Type II Mucolipidoses,Type III Mucolipidoses,Type IV Mucolipidoses
D009439 Neuraminidase An enzyme that catalyzes the hydrolysis of alpha-2,3, alpha-2,6-, and alpha-2,8-glycosidic linkages (at a decreasing rate, respectively) of terminal sialic residues in oligosaccharides, glycoproteins, glycolipids, colominic acid, and synthetic substrate. (From Enzyme Nomenclature, 1992) Sialidase,Exo-alpha-Sialidase,N-Acylneuraminate Glycohydrolases,Oligosaccharide Sialidase,Exo alpha Sialidase,Glycohydrolases, N-Acylneuraminate,N Acylneuraminate Glycohydrolases,Sialidase, Oligosaccharide
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004592 Electrophoresis, Starch Gel Electrophoresis in which a starch gel (a mixture of amylose and amylopectin) is used as the diffusion medium. Starch Gel Electrophoresis
D004950 Esterases Any member of the class of enzymes that catalyze the cleavage of an ester bond and result in the addition of water to the resulting molecules. Esterase
D006596 Hexosaminidases Enzymes that catalyze the hydrolysis of N-acylhexosamine residues in N-acylhexosamides. Hexosaminidases also act on GLUCOSIDES; GALACTOSIDES; and several OLIGOSACCHARIDES. Galactosaminidases,Hexosaminidase,Galactosaminidase,Glucosaminidase,Glucosaminidases
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000135 Acid Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.2. Acid beta-Glycerophosphatase,Acid beta Glycerophosphatase

Related Publications

M J Champion, and T B Shows
January 1981, Human genetics,
M J Champion, and T B Shows
January 1998, Ryoikibetsu shokogun shirizu,
M J Champion, and T B Shows
February 1982, European journal of biochemistry,
M J Champion, and T B Shows
February 1979, The Biochemical journal,
M J Champion, and T B Shows
December 1968, European journal of biochemistry,
M J Champion, and T B Shows
February 1985, American journal of ophthalmology,
M J Champion, and T B Shows
November 1982, Experimental cell research,
M J Champion, and T B Shows
March 1973, Clinica chimica acta; international journal of clinical chemistry,
Copied contents to your clipboard!