Phase transitions of Acholeplasma laidlawii membranes. The involvement of Mg(2+)-ATPase in the C transition. 1993

J W Chen, and L Y Hu, and F Hwang
Institute of Biophysics, Academia Sinica, Beijing, China.

Highly sensitive differential scanning calorimetry has been employed to study the phase transitions of A. laidlawii membrane. The DSC curves obtained show five distinct transitions between 20 and 80 degrees C which contain a reversible lipid thermotropic transition at about 37 degrees C and four irreversible denaturation transitions of the membrane proteins occurred at about 44 degrees C, 52 degrees C, 62 degrees C, and 67 degrees C, respectively. Total enthalpy of the thermal denaturation of membrane proteins is 3.4 +/- 0.5 cal/g. Further study of A. laidlawii membrane preparations by means of thermal gel analysis and enzyme activity measurements at various temperatures provided information that the third peak (C transition) of the DSC curve involved primarily with Mg(2+)-ATPase on A. laidlawii membranes.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D002152 Calorimetry, Differential Scanning Differential thermal analysis in which the sample compartment of the apparatus is a differential calorimeter, allowing an exact measure of the heat of transition independent of the specific heat, thermal conductivity, and other variables of the sample. Differential Thermal Analysis, Calorimetric,Calorimetric Differential Thermal Analysis,Differential Scanning Calorimetry,Scanning Calorimetry, Differential
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000128 Acholeplasma laidlawii An organism originally isolated from sewage, manure, humus, and soil, but recently found as a parasite in mammals and birds. Mycoplasma laidlawii
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D017301 Ca(2+) Mg(2+)-ATPase An enzyme that catalyzes the hydrolysis of ATP and is activated by millimolar concentrations of either Ca(2+) or Mg(2+). Unlike CA(2+)-TRANSPORTING ATPASE it does not require the second divalent cation for its activity, and is not sensitive to orthovanadate. (Prog Biophys Mol Biol 1988;52(1):1). A subgroup of EC 3.6.1.3. ATPase, Calcium Magnesium,ATPase, Magnesium,Adenosinetriphosphatase, Calcium, Magnesium,Adenosinetriphosphatase, Magnesium,Calcium Magnesium ATPase,Calcium Magnesium Adenosinetriphosphatase,Magnesium ATPase,Magnesium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium, Magnesium,Adenosine Triphosphatase, Magnesium,Ca Mg-ATPase,Ca2+-Mg2+ ATPase,Calcium Magnesium Adenosine Triphosphatase,Mg2+-ATPase,Mg2+-Dependent ATPase,ATPase, Ca2+-Mg2+,ATPase, Mg2+-Dependent,Adenosinetriphosphatase, Calcium Magnesium,Ca Mg ATPase,Ca2+ Mg2+ ATPase,Magnesium Adenosine Triphosphatase,Mg2+ ATPase,Mg2+ Dependent ATPase

Related Publications

J W Chen, and L Y Hu, and F Hwang
March 1991, Biochemistry international,
J W Chen, and L Y Hu, and F Hwang
January 1982, Reviews of infectious diseases,
J W Chen, and L Y Hu, and F Hwang
October 1984, Lipids,
J W Chen, and L Y Hu, and F Hwang
January 1980, Biokhimiia (Moscow, Russia),
J W Chen, and L Y Hu, and F Hwang
January 1990, Biochemistry and cell biology = Biochimie et biologie cellulaire,
J W Chen, and L Y Hu, and F Hwang
September 1991, FEMS microbiology letters,
J W Chen, and L Y Hu, and F Hwang
January 1982, Reviews of infectious diseases,
J W Chen, and L Y Hu, and F Hwang
September 1984, FEBS letters,
Copied contents to your clipboard!