The effects of MgADP on cross-bridge kinetics: a laser flash photolysis study of guinea-pig smooth muscle. 1993

E Nishiye, and A V Somlyo, and K Török, and A P Somlyo
Department of Physiology, University of Virginia, Charlottesville 22908.

1. The effects of MgADP on cross-bridge kinetics were investigated using laser flash photolysis of caged ATP (P3-1(2-nitrophenyl) ethyladenosine 5'-triphosphate), in guinea-pig portal vein smooth muscle permeabilized with Staphylococcus aureus alpha-toxin. Isometric tension and in-phase stiffness transitions from rigor state were monitored upon photolysis of caged ATP. The estimated concentration of ATP released from caged ATP by high-pressure liquid chromatography (HPLC) was 1.3 mM. 2. The time course of relaxation initiated by photolysis of caged ATP in the absence of Ca2+ was well fitted during the initial 200 ms by two exponential functions with time constants of, respectively, tau 1 = 34 ms and tau 2 = 1.2 s and relative amplitudes of 0.14 and 0.86. Multiple exponential functions were needed to fit longer intervals; the half-time of the overall relaxation was 0.8 s. The second order rate constant for cross-bridge detachment by ATP, estimated from the rate of initial relaxation, was 0.4-2.3 x 10(4) M-1 s-1. 3. MgADP dose dependently reduced both the relative amplitude of the first component and the rate constant of the second component of relaxation. Conversely, treatment of muscles with apyrase, to deplete endogenous ADP, increased the relative amplitude of the first component. In the presence of MgADP, in-phase stiffness decreased during force maintenance, suggesting that the force per cross-bridge increased. The apparent dissociation constant (Kd) of MgADP for the cross-bridge binding site, estimated from its concentration-dependent effect on the relative amplitude of the first component, was 1.3 microM. This affinity is much higher than the previously reported values (50-300 microM for smooth muscle; 18-400 microM for skeletal muscle; 7-10 microM for cardiac muscle). It is possible that the high affinity reflects the properties of a state generated during the co-operative reattachment cycle, rather than that of the rigor bridge. 4. The rate constant of MgADP release from cross-bridges, estimated from its concentration-dependent effect on the rate constant of the second (tau 2) component, was 0.35-7.7 s-1. To the extent that reattachment of cross-bridges could slow relaxation even during the initial 200 ms, this rate constant may be an underestimate. 5. Inorganic phosphate (Pi, 30 mM) did not affect the rate of relaxation during the initial approximately 50 ms, but accelerated the slower phase of relaxation, consistent with a cyclic cross-bridge model in which Pi increases the proportion of cross-bridges in detached ('weakly bound') states.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007834 Lasers An optical source that emits photons in a coherent beam. Light Amplification by Stimulated Emission of Radiation (LASER) is brought about using devices that transform light of varying frequencies into a single intense, nearly nondivergent beam of monochromatic radiation. Lasers operate in the infrared, visible, ultraviolet, or X-ray regions of the spectrum. Masers,Continuous Wave Lasers,Pulsed Lasers,Q-Switched Lasers,Continuous Wave Laser,Laser,Laser, Continuous Wave,Laser, Pulsed,Laser, Q-Switched,Lasers, Continuous Wave,Lasers, Pulsed,Lasers, Q-Switched,Maser,Pulsed Laser,Q Switched Lasers,Q-Switched Laser
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D010782 Photolysis Chemical bond cleavage reactions resulting from absorption of radiant energy. Photodegradation
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

E Nishiye, and A V Somlyo, and K Török, and A P Somlyo
February 1988, The Journal of general physiology,
E Nishiye, and A V Somlyo, and K Török, and A P Somlyo
December 1993, Journal of muscle research and cell motility,
E Nishiye, and A V Somlyo, and K Török, and A P Somlyo
December 1995, Biophysical journal,
E Nishiye, and A V Somlyo, and K Török, and A P Somlyo
April 1995, The Journal of physiology,
E Nishiye, and A V Somlyo, and K Török, and A P Somlyo
January 1991, The Journal of physiology,
E Nishiye, and A V Somlyo, and K Török, and A P Somlyo
September 1996, Biophysical journal,
E Nishiye, and A V Somlyo, and K Török, and A P Somlyo
November 1994, Canadian journal of physiology and pharmacology,
E Nishiye, and A V Somlyo, and K Török, and A P Somlyo
January 2004, Journal of muscle research and cell motility,
E Nishiye, and A V Somlyo, and K Török, and A P Somlyo
October 1997, The Japanese journal of physiology,
E Nishiye, and A V Somlyo, and K Török, and A P Somlyo
September 2003, Organic letters,
Copied contents to your clipboard!