Phenylketonuria: variable phenotypic outcomes of the R261Q mutation and maternal PKU in the offspring of a healthy homozygote. 1993

S Kleiman, and L Vanagaite, and J Bernstein, and G Schwartz, and N Brand, and A Elitzur, and S L Woo, and Y Shiloh
Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel.

Phenylketonuria (PKU) and benign hyperphenylalaninaemia (HPA) result from a variety of mutations in the gene for the hepatic enzyme phenylalanine hydroxylase. PKU has been found in the Israeli population in two variants, classical and atypical. The two are clinically indistinguishable and require treatment with low phenylalanine diet to prevent mental retardation, but show differences in serum phenylalanine levels and in tolerance to this amino acid. Maternal PKU is a syndrome of congenital anomalies and mental retardation that appears in offspring of PKU mothers as a result of fetal exposure to the high phenylalanine level in the maternal blood. We studied a family in which two children with severe, classical PKU and their unaffected brother showed mild signs of maternal PKU. Their mother had no clinical signs of PKU, but the phenylalanine concentration in her serum reached a level that usually characterises PKU patients. This woman represents a rare phenotype, benign atypical PKU. Such 'hidden' PKU in women may lead to maternal PKU in the offspring, similar to overt PKU. Special attention should therefore be paid to women having children with any of the clinical hallmarks of maternal PKU, and to children born to women known to have benign HPA. The mother was also found to be homozygous for a missense mutation at the phenylalanine hydroxylase locus, R261Q, which does not abolish enzymatic activity completely. In two other families, homozygosity for this mutation resulted in atypical PKU in four children. This observation suggests that mutations that do not completely destroy phenylalanine hydroxylase activity may exhibit variable phenotypic expression which is unpredictable. Compound heterozygosity for R261Q and other mutations led in other patients either to classical PKU or to mild benign HPA.

UI MeSH Term Description Entries
D008297 Male Males
D008431 Maternal-Fetal Exchange Exchange of substances between the maternal blood and the fetal blood at the PLACENTA via PLACENTAL CIRCULATION. The placental barrier excludes microbial or viral transmission. Transplacental Exposure,Exchange, Maternal-Fetal,Exposure, Transplacental,Maternal Fetal Exchange
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010375 Pedigree The record of descent or ancestry, particularly of a particular condition or trait, indicating individual family members, their relationships, and their status with respect to the trait or condition. Family Tree,Genealogical Tree,Genealogic Tree,Genetic Identity,Identity, Genetic,Family Trees,Genealogic Trees,Genealogical Trees,Genetic Identities,Identities, Genetic,Tree, Family,Tree, Genealogic,Tree, Genealogical,Trees, Family,Trees, Genealogic,Trees, Genealogical
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D010649 Phenylalanine An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. Endorphenyl,L-Phenylalanine,Phenylalanine, L-Isomer,L-Isomer Phenylalanine,Phenylalanine, L Isomer
D010651 Phenylalanine Hydroxylase An enzyme of the oxidoreductase class that catalyzes the formation of L-TYROSINE, dihydrobiopterin, and water from L-PHENYLALANINE, tetrahydrobiopterin, and oxygen. Deficiency of this enzyme may cause PHENYLKETONURIAS and PHENYLKETONURIA, MATERNAL. EC 1.14.16.1. Phenylalanine 4-Hydroxylase,Phenylalanine 4-Monooxygenase,4-Hydroxylase, Phenylalanine,4-Monooxygenase, Phenylalanine,Hydroxylase, Phenylalanine,Phenylalanine 4 Hydroxylase,Phenylalanine 4 Monooxygenase
D010661 Phenylketonurias A group of autosomal recessive disorders marked by a deficiency of the hepatic enzyme PHENYLALANINE HYDROXYLASE or less frequently by reduced activity of DIHYDROPTERIDINE REDUCTASE (i.e., atypical phenylketonuria). Classical phenylketonuria is caused by a severe deficiency of phenylalanine hydroxylase and presents in infancy with developmental delay; SEIZURES; skin HYPOPIGMENTATION; ECZEMA; and demyelination in the central nervous system. (From Adams et al., Principles of Neurology, 6th ed, p952). Biopterin Deficiency,Dihydropteridine Reductase Deficiency Disease,Hyperphenylalaninemia, Non-Phenylketonuric,Phenylalanine Hydroxylase Deficiency Disease,BH4 Deficiency,DHPR Deficiency,Deficiency Disease, Dihydropteridine Reductase,Deficiency Disease, Phenylalanine Hydroxylase,Deficiency Disease, Phenylalanine Hydroxylase, Severe,Dihydropteridine Reductase Deficiency,Folling Disease,Folling's Disease,HPABH4C,Hyperphenylalaninaemia,Hyperphenylalaninemia Caused by a Defect in Biopterin Metabolism,Hyperphenylalaninemia, BH4-Deficient, C,Hyperphenylalaninemia, Tetrahydrobiopterin-Deficient, Due To DHPR Deficiency,Non-Phenylketonuric Hyperphenylalaninemia,Oligophrenia Phenylpyruvica,PAH Deficiency,PKU, Atypical,Phenylalanine Hydroxylase Deficiency,Phenylalanine Hydroxylase Deficiency Disease, Severe,Phenylketonuria,Phenylketonuria I,Phenylketonuria II,Phenylketonuria Type 2,Phenylketonuria, Atypical,Phenylketonuria, Classical,QDPR Deficiency,Quinoid Dihydropteridine Reductase Deficiency,Tetrahydrobiopterin Deficiency,Atypical PKU,Atypical Phenylketonuria,Biopterin Deficiencies,Classical Phenylketonuria,Deficiency, BH4,Deficiency, Biopterin,Deficiency, DHPR,Deficiency, Dihydropteridine Reductase,Deficiency, PAH,Deficiency, Phenylalanine Hydroxylase,Deficiency, QDPR,Deficiency, Tetrahydrobiopterin,Disease, Folling,Disease, Folling's,Hyperphenylalaninemia, Non Phenylketonuric,Non Phenylketonuric Hyperphenylalaninemia,Non-Phenylketonuric Hyperphenylalaninemias
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011248 Pregnancy Complications Conditions or pathological processes associated with pregnancy. They can occur during or after pregnancy, and range from minor discomforts to serious diseases that require medical interventions. They include diseases in pregnant females, and pregnancies in females with diseases. Adverse Birth Outcomes,Complications, Pregnancy,Adverse Birth Outcome,Birth Outcome, Adverse,Complication, Pregnancy,Outcome, Adverse Birth,Pregnancy Complication

Related Publications

S Kleiman, and L Vanagaite, and J Bernstein, and G Schwartz, and N Brand, and A Elitzur, and S L Woo, and Y Shiloh
June 1987, Clinical biochemistry,
S Kleiman, and L Vanagaite, and J Bernstein, and G Schwartz, and N Brand, and A Elitzur, and S L Woo, and Y Shiloh
January 1985, Progress in clinical and biological research,
S Kleiman, and L Vanagaite, and J Bernstein, and G Schwartz, and N Brand, and A Elitzur, and S L Woo, and Y Shiloh
January 1993, Journal of inherited metabolic disease,
S Kleiman, and L Vanagaite, and J Bernstein, and G Schwartz, and N Brand, and A Elitzur, and S L Woo, and Y Shiloh
August 1991, Clinical biochemistry,
S Kleiman, and L Vanagaite, and J Bernstein, and G Schwartz, and N Brand, and A Elitzur, and S L Woo, and Y Shiloh
February 2000, JAMA,
S Kleiman, and L Vanagaite, and J Bernstein, and G Schwartz, and N Brand, and A Elitzur, and S L Woo, and Y Shiloh
September 2023, JIMD reports,
S Kleiman, and L Vanagaite, and J Bernstein, and G Schwartz, and N Brand, and A Elitzur, and S L Woo, and Y Shiloh
January 2015, JIMD reports,
S Kleiman, and L Vanagaite, and J Bernstein, and G Schwartz, and N Brand, and A Elitzur, and S L Woo, and Y Shiloh
July 2003, Journal of paediatrics and child health,
S Kleiman, and L Vanagaite, and J Bernstein, and G Schwartz, and N Brand, and A Elitzur, and S L Woo, and Y Shiloh
January 1993, Advances in experimental medicine and biology,
S Kleiman, and L Vanagaite, and J Bernstein, and G Schwartz, and N Brand, and A Elitzur, and S L Woo, and Y Shiloh
May 2001, Pediatric research,
Copied contents to your clipboard!