Tumor necrosis factor-alpha potentiates phospholipase A2-stimulated release and metabolism of arachidonic acid in cultured intestinal epithelial cells (INT 407). 1993

C Gustafson-Svärd, and C Tagesson, and R M Boll, and B Kald
Dept. of Occupational Medicine, Faculty of Health Sciences, Linköping University, Sweden.

Tumor necrosis factor-alpha (TNF-alpha), a known pro-inflammatory cytokine, has been suggested to play a role in the pathogenesis of inflammatory bowel disease (IBD) by mediating damage to the intestinal epithelial cells. The present study demonstrates that TNF-alpha potentiates release and metabolism of 14C-labeled arachidonic acid (14C-AA) in cultured intestinal epithelial cells (INT 407). Although TNF-alpha on its own was but a weak stimulator of cellular 14C-AA turnover, it significantly potentiated the release of 14C-AA and 14C-labeled prostaglandin E2(14C-PGE2) after stimulation with three known phospholipase A2 activators: phospholipase. C from Clostridium perfringens, the calcium ionophore A23187, and the phorbol ester 4-beta-phorbol-12-myristate-13-acetate (PMA). The phospholipase A2 inhibitor quinacrine significantly reduced both AA and PGE2 release after combined stimulation with phospholipase C and TNF-alpha. In contrast to its effect on the AA turnover, TNF-alpha did not affect the phospholipase C-stimulated production of platelet-activating factor (PAF-acether). Taken together, these findings indicate that a) TNF-alpha potentiates phospholipase A2-stimulated AA release from cultured intestinal epithelial cells; b) TNF-alpha may stimulate phospholipase A2-dependent AA release without affecting the formation of PAF-acether and c) pretreatment with TNF-alpha potentiates the formation of PGE2 after stimulation with phospholipase A2 activators. In summary, the present investigation points to the possibility that TNF-alpha may stimulate intestinal epithelial cells to produce biologically active AA metabolites and that this stimulation may be modulated by components of the intestinal luminal content, like bacterial toxins.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D010741 Phospholipases A Phospholipases that hydrolyze one of the acyl groups of phosphoglycerides or glycerophosphatidates.
D010972 Platelet Activating Factor A phospholipid derivative formed by PLATELETS; BASOPHILS; NEUTROPHILS; MONOCYTES; and MACROPHAGES. It is a potent platelet aggregating agent and inducer of systemic anaphylactic symptoms, including HYPOTENSION; THROMBOCYTOPENIA; NEUTROPENIA; and BRONCHOCONSTRICTION. AGEPC,Acetyl Glyceryl Ether Phosphorylcholine,PAF-Acether,Phosphorylcholine, Acetyl Glyceryl Ether,1-Alkyl-2-acetyl-sn-glycerophosphocholine,Platelet Aggregating Factor,Platelet Aggregation Enhancing Factor,Platelet-Activating Substance,Thrombocyte Aggregating Activity,1 Alkyl 2 acetyl sn glycerophosphocholine,Aggregating Factor, Platelet,Factor, Platelet Activating,PAF Acether,Platelet Activating Substance
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000001 Calcimycin An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems. 4-Benzoxazolecarboxylic acid, 5-(methylamino)-2-((3,9,11-trimethyl-8-(1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl)-1,7-dioxaspiro(5.5)undec-2-yl)methyl)-, (6S-(6alpha(2S*,3S*),8beta(R*),9beta,11alpha))-,A-23187,A23187,Antibiotic A23187,A 23187,A23187, Antibiotic

Related Publications

C Gustafson-Svärd, and C Tagesson, and R M Boll, and B Kald
August 1994, Journal of biochemical toxicology,
C Gustafson-Svärd, and C Tagesson, and R M Boll, and B Kald
August 1991, Biochemical and biophysical research communications,
C Gustafson-Svärd, and C Tagesson, and R M Boll, and B Kald
June 1996, Prostaglandins, leukotrienes, and essential fatty acids,
C Gustafson-Svärd, and C Tagesson, and R M Boll, and B Kald
May 1993, The Journal of biological chemistry,
C Gustafson-Svärd, and C Tagesson, and R M Boll, and B Kald
August 1987, Agents and actions,
C Gustafson-Svärd, and C Tagesson, and R M Boll, and B Kald
January 1998, Methods in molecular biology (Clifton, N.J.),
C Gustafson-Svärd, and C Tagesson, and R M Boll, and B Kald
October 2002, The Journal of biological chemistry,
C Gustafson-Svärd, and C Tagesson, and R M Boll, and B Kald
February 1996, Biochimica et biophysica acta,
C Gustafson-Svärd, and C Tagesson, and R M Boll, and B Kald
October 1993, American journal of obstetrics and gynecology,
Copied contents to your clipboard!