Inhibition of c-myc in breast and ovarian carcinoma cells by 1,25-dihydroxyvitamin D3, retinoic acid and dexamethasone. 1993

D E Saunders, and C Christensen, and N L Wappler, and J F Schultz, and W D Lawrence, and V K Malviya, and J M Malone, and G Deppe
Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201.

The role and regulation of the c-myc protooncogene in breast and ovarian neoplasms is receiving increased attention. The downregulation of the c-myc protooncogene by 1,25-dihydroxyvitamin D3 (calcitriol), retinoic acid (RA) and dexamethasone (Dex) is closely associated with growth inhibition in leukemic cells. Calcitriol, RA and Dex have anti-proliferative activity in breast and gynecologic carcinoma cells; however, the regulation of c-myc by these agents in breast and ovarian cancers is mostly unknown. We have addressed the regulation of c-myc in these cancers using an adaptation of a novel method which employs an immunohistochemical procedure to detect c-myc protein followed by quantification of c-myc staining with computerized image analysis. This system represents an alternative to protein product assay by Western blotting and is straightforward, rapid (1 day), can be carried out on a small scale and provides a sample size that readily facilitates statistical analysis of assay data. In MCF-7 human breast cancer cells, c-myc was suppressed 29% by 0.5 nM Dex, 45% by 0.01 nM RA and 54% by 100 nM calcitriol after 24 h of drug treatment. At the same hormone concentrations, growth was inhibited 18% by Dex, 18% by RA and 39% by calcitriol after 3 days of treatment (p < 0.05 for all hormones). Similar patterns of growth and c-myc inhibition were seen in T47D human breast cancer cells and NIH:OVCAR3 human ovarian cancer cells, with the exception of Dex in T47D cells, which caused no inhibition of c-myc or growth.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D010051 Ovarian Neoplasms Tumors or cancer of the OVARY. These neoplasms can be benign or malignant. They are classified according to the tissue of origin, such as the surface EPITHELIUM, the stromal endocrine cells, and the totipotent GERM CELLS. Cancer of Ovary,Ovarian Cancer,Cancer of the Ovary,Neoplasms, Ovarian,Ovary Cancer,Ovary Neoplasms,Cancer, Ovarian,Cancer, Ovary,Cancers, Ovarian,Cancers, Ovary,Neoplasm, Ovarian,Neoplasm, Ovary,Neoplasms, Ovary,Ovarian Cancers,Ovarian Neoplasm,Ovary Cancers,Ovary Neoplasm
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D003864 Depression, Chemical The decrease in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Depression,Chemical Depressions,Depressions, Chemical
D003907 Dexamethasone An anti-inflammatory 9-fluoro-glucocorticoid. Hexadecadrol,Decaject,Decaject-L.A.,Decameth,Decaspray,Dexasone,Dexpak,Hexadrol,Maxidex,Methylfluorprednisolone,Millicorten,Oradexon,Decaject L.A.
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014212 Tretinoin An important regulator of GENE EXPRESSION during growth and development, and in NEOPLASMS. Tretinoin, also known as retinoic acid and derived from maternal VITAMIN A, is essential for normal GROWTH; and EMBRYONIC DEVELOPMENT. An excess of tretinoin can be teratogenic. It is used in the treatment of PSORIASIS; ACNE VULGARIS; and several other SKIN DISEASES. It has also been approved for use in promyelocytic leukemia (LEUKEMIA, PROMYELOCYTIC, ACUTE). Retinoic Acid,Vitamin A Acid,Retin-A,Tretinoin Potassium Salt,Tretinoin Sodium Salt,Tretinoin Zinc Salt,Vesanoid,all-trans-Retinoic Acid,beta-all-trans-Retinoic Acid,trans-Retinoic Acid,Acid, Retinoic,Acid, Vitamin A,Acid, all-trans-Retinoic,Acid, beta-all-trans-Retinoic,Acid, trans-Retinoic,Potassium Salt, Tretinoin,Retin A,Salt, Tretinoin Potassium,Salt, Tretinoin Sodium,Salt, Tretinoin Zinc,Sodium Salt, Tretinoin,Zinc Salt, Tretinoin,all trans Retinoic Acid,beta all trans Retinoic Acid,trans Retinoic Acid

Related Publications

D E Saunders, and C Christensen, and N L Wappler, and J F Schultz, and W D Lawrence, and V K Malviya, and J M Malone, and G Deppe
July 1984, The Journal of biological chemistry,
D E Saunders, and C Christensen, and N L Wappler, and J F Schultz, and W D Lawrence, and V K Malviya, and J M Malone, and G Deppe
October 1999, Journal of neuroscience research,
D E Saunders, and C Christensen, and N L Wappler, and J F Schultz, and W D Lawrence, and V K Malviya, and J M Malone, and G Deppe
April 2001, The Journal of endocrinology,
D E Saunders, and C Christensen, and N L Wappler, and J F Schultz, and W D Lawrence, and V K Malviya, and J M Malone, and G Deppe
October 1985, Nutrition reviews,
D E Saunders, and C Christensen, and N L Wappler, and J F Schultz, and W D Lawrence, and V K Malviya, and J M Malone, and G Deppe
September 1987, Lancet (London, England),
D E Saunders, and C Christensen, and N L Wappler, and J F Schultz, and W D Lawrence, and V K Malviya, and J M Malone, and G Deppe
July 2020, Oncotarget,
D E Saunders, and C Christensen, and N L Wappler, and J F Schultz, and W D Lawrence, and V K Malviya, and J M Malone, and G Deppe
July 1989, Journal of molecular endocrinology,
D E Saunders, and C Christensen, and N L Wappler, and J F Schultz, and W D Lawrence, and V K Malviya, and J M Malone, and G Deppe
January 1990, Bone,
D E Saunders, and C Christensen, and N L Wappler, and J F Schultz, and W D Lawrence, and V K Malviya, and J M Malone, and G Deppe
January 1989, Molecular endocrinology (Baltimore, Md.),
D E Saunders, and C Christensen, and N L Wappler, and J F Schultz, and W D Lawrence, and V K Malviya, and J M Malone, and G Deppe
May 1989, Clinical and experimental immunology,
Copied contents to your clipboard!