Lactate and postischemic recovery of energy metabolism and electrical activity in the isolated perfused rat brain. 1993

A Bock, and F Tegtmeier, and A J Hansen, and M Höller
Department of Experimental Medicine, Janssen Research Foundation, Neuss, Germany.

The aim of the present study was to evaluate whether lactate can maintain the energy metabolism and electrical activity of isolated perfused rat brain in the absence of glucose. To exhaust cerebral glucose stores and simultaneously raise endogenous lactate, complete ischemia was induced. After ischemia, when a glucose-free perfusate was supplied, restoration of interstitial potassium (Ke+), cortical discontinuous current (DC) potential, electroencephalogram (EEG) activity, and ATP and phosphocreatine (PCr) was not significantly different from postischemic recovery findings when a glucose-containing perfusate was used. In the group receiving glucose-free perfusate, postischemic application of 1 mM iodoacetic acid did not inhibit the recovery of electrical activity, Ke+, or DC potential. After recovery of Ke+ in glucose-free reperfusion, a 20-30-Hz EEG pattern appeared and was maintained for about 20 min followed by disappearance of spontaneous electrical activity. An abrupt increase of Ke+, a steep negative DC shift, and a substantial decrease of ATP and PCr occurred after about 22 min of reperfusion. During the first 5 min of glucose-free reperfusion, consumption of lactate was significantly higher (0.89 mumol/g wet weight/min) than during reperfusion with medium containing glucose (0.41 mumol/g ww/min). Increasing amounts of tissue lactate prolonged maintenance of electrical function in glucose-free reperfusion. This correlation could not be found for free fatty acids. In conclusion, after a few minutes of ischemia, the brain is able to recover cellular ion transport and electrical activity without a supply of glucose, preferentially by combustion of lactate accumulated in brain tissue. This mechanism is only useful during a limited time period until the lactate accumulated during ischemia is combusted.

UI MeSH Term Description Entries
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D008297 Male Males
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002545 Brain Ischemia Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION. Cerebral Ischemia,Ischemic Encephalopathy,Encephalopathy, Ischemic,Ischemia, Cerebral,Brain Ischemias,Cerebral Ischemias,Ischemia, Brain,Ischemias, Cerebral,Ischemic Encephalopathies
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

A Bock, and F Tegtmeier, and A J Hansen, and M Höller
March 1989, Biochemical pharmacology,
A Bock, and F Tegtmeier, and A J Hansen, and M Höller
June 1985, Naunyn-Schmiedeberg's archives of pharmacology,
A Bock, and F Tegtmeier, and A J Hansen, and M Höller
August 1987, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
A Bock, and F Tegtmeier, and A J Hansen, and M Höller
July 1965, Annals of the New York Academy of Sciences,
A Bock, and F Tegtmeier, and A J Hansen, and M Höller
August 1980, Journal of neurochemistry,
A Bock, and F Tegtmeier, and A J Hansen, and M Höller
January 1970, Pflugers Archiv : European journal of physiology,
A Bock, and F Tegtmeier, and A J Hansen, and M Höller
September 1975, Biochemical pharmacology,
A Bock, and F Tegtmeier, and A J Hansen, and M Höller
January 1966, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
A Bock, and F Tegtmeier, and A J Hansen, and M Höller
January 1976, Biochemical Society transactions,
Copied contents to your clipboard!