Genotoxicity analysis of N,N-dimethylaniline and N,N-dimethyl-p-toluidine. 1993

M Taningher, and R Pasquini, and S Bonatti
Institute of Oncology-CIRC, University of Genoa/National Institute for Cancer Research, Italy.

N,N-Dimethylaniline (DMA, CAS No. 121-69-7) and N,N-dimethyl-p-toluidine (DMPT, CAS No. 99-97-8) belong to the N-dialkylaminoaromatics, a chemical class structurally alerting to DNA reactivity. Their applications may be industrial (dye and pesticide intermediates, polymerizing agents) and surgical (polymerization accelerators for the manufacture of bone cements and prosthetic devices), thus implying heterogeneous types of human exposure. Findings of carcinogenicity in rodents and some nonexhaustive genotoxicity data are available for DMA, but to our knowledge no information is available on DMPT concerning either carcinogenicity or any kind of genetic toxicity. To investigate their mechanism of action and mutagenic/carcinogenic potential, DMA and DMPT were analyzed for complementary genotoxicity endpoints, namely, gene mutation in Salmonella (Ames test), structural and numerical chromosome aberrations in hamster V79 cells (micronucleus test, matched with an immunofluorescent staining for kinetochore proteins), and in vivo DNA damage in mouse and rat liver (alkaline DNA elution test). The results essentially indicate that both chemicals are chromosome damaging agents. Indeed, at the maximum nontoxic doses, they proved nonmutagenic in Salmonella (although their toxicity did not allow concentrations > 70 micrograms/plate to be tested) and weakly positive in inducing DNA damage (increases in DNA elution rates at most approximately 2.4 times control value). Conversely, they proved clearly positive in inducing numerical chromosome alterations, with dose-dependent increases up to more than five times the control value for DMPT. At the highest dose tested, both chemicals also showed a significant clastogenic effect.

UI MeSH Term Description Entries
D008110 Liver Extracts Extracts of liver tissue containing uncharacterized specific factors with specific activities; a soluble thermostable fraction of mammalian liver is used in the treatment of pernicious anemia. Perhepar,Extracts, Liver
D008297 Male Males
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D008940 Mitotic Index An expression of the number of mitoses found in a stated number of cells. Index, Mitotic,Indices, Mitotic,Mitotic Indices
D009152 Mutagenicity Tests Tests of chemical substances and physical agents for mutagenic potential. They include microbial, insect, mammalian cell, and whole animal tests. Genetic Toxicity Tests,Genotoxicity Tests,Mutagen Screening,Tests, Genetic Toxicity,Toxicity Tests, Genetic,Genetic Toxicity Test,Genotoxicity Test,Mutagen Screenings,Mutagenicity Test,Screening, Mutagen,Screenings, Mutagen,Test, Genotoxicity,Tests, Genotoxicity,Toxicity Test, Genetic
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002503 Centromere The clear constricted portion of the chromosome at which the chromatids are joined and by which the chromosome is attached to the spindle during cell division. Centromeres
D002869 Chromosome Aberrations Abnormal number or structure of chromosomes. Chromosome aberrations may result in CHROMOSOME DISORDERS. Autosome Abnormalities,Cytogenetic Aberrations,Abnormalities, Autosome,Abnormalities, Chromosomal,Abnormalities, Chromosome,Chromosomal Aberrations,Chromosome Abnormalities,Cytogenetic Abnormalities,Aberration, Chromosomal,Aberration, Chromosome,Aberration, Cytogenetic,Aberrations, Chromosomal,Aberrations, Chromosome,Aberrations, Cytogenetic,Abnormalities, Cytogenetic,Abnormality, Autosome,Abnormality, Chromosomal,Abnormality, Chromosome,Abnormality, Cytogenetic,Autosome Abnormality,Chromosomal Aberration,Chromosomal Abnormalities,Chromosomal Abnormality,Chromosome Aberration,Chromosome Abnormality,Cytogenetic Aberration,Cytogenetic Abnormality

Related Publications

M Taningher, and R Pasquini, and S Bonatti
June 1954, Pracovni lekarstvi,
M Taningher, and R Pasquini, and S Bonatti
January 1975, Journal of dental research,
M Taningher, and R Pasquini, and S Bonatti
February 1991, Contact dermatitis,
M Taningher, and R Pasquini, and S Bonatti
April 2017, Archives of toxicology,
M Taningher, and R Pasquini, and S Bonatti
May 2007, Journal of toxicology and environmental health. Part A,
M Taningher, and R Pasquini, and S Bonatti
August 2016, Toxicologic pathology,
M Taningher, and R Pasquini, and S Bonatti
May 2007, Journal of toxicology and environmental health. Part A,
M Taningher, and R Pasquini, and S Bonatti
February 1990, Contact dermatitis,
Copied contents to your clipboard!