Modularity of protein function: chimeric interleukin 1 beta s containing specific protease inhibitor loops retain function of both molecules. 1993

A J Wolfson, and M Kanaoka, and F Lau, and D Ringe, and P Young, and J Lee, and J Blumenthal
Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02254-9110.

Although it is widely recognized that many proteins contain discrete functional domains, it is less certain whether smaller, less obviously discrete, units of structure will retain their specific function when transplanted into a different context. The observation that the potent inflammatory cytokine human interleukin 1 beta has the same overall structure as soybean trypsin inhibitor (STI) (Kunitz) prompted us to replace a tight turn in the cytokine sequence with the large loop in soybean trypsin inhibitor that binds to the active site of trypsin. Wild-type interleukin 1 beta (IL-1 beta) is highly resistant to proteolysis, but the chimeric STI/IL is specifically cleaved by trypsin, apparently in the inserted loop. Other chimeric interleukins have also been constructed, by replacing the same tight turn with inhibitory loops from other protein protease inhibitors: turkey ovomucoid inhibitor (TOI), a chymotrypsin inhibitor, and alpha 1-antitrypsin (AT), an elastase inhibitor. Although these loops come from proteins not related structurally to interleukin 1, they confer specific protease sensitivity or inhibition on the chimeric cytokine. The cytokine properties of these chimeric interleukins have also been evaluated. The chimeras formed from human IL-1 beta and all inhibitory loops tested bind to the interleukin 1 receptor with reasonable affinity. The typical cellular effects of IL-1, however, are not observed with all the recombinant proteins, thus confirming that receptor binding and signal transduction can be uncoupled. When these results are taken together with the results of site-directed mutagenesis of IL-1, reported in this paper and elsewhere, they allow the receptor and intracellular transduction sites on the protein to be mapped in detail.

UI MeSH Term Description Entries
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010059 Ovomucin A heterogeneous mixture of glycoproteins responsible for the gel structure of egg white. It has trypsin-inhibiting activity. Ovomucoid
D011480 Protease Inhibitors Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES). Antiprotease,Endopeptidase Inhibitor,Endopeptidase Inhibitors,Peptidase Inhibitor,Peptidase Inhibitors,Peptide Hydrolase Inhibitor,Peptide Hydrolase Inhibitors,Peptide Peptidohydrolase Inhibitor,Peptide Peptidohydrolase Inhibitors,Protease Antagonist,Protease Antagonists,Antiproteases,Protease Inhibitor,Antagonist, Protease,Antagonists, Protease,Hydrolase Inhibitor, Peptide,Hydrolase Inhibitors, Peptide,Inhibitor, Endopeptidase,Inhibitor, Peptidase,Inhibitor, Peptide Hydrolase,Inhibitor, Peptide Peptidohydrolase,Inhibitor, Protease,Inhibitors, Endopeptidase,Inhibitors, Peptidase,Inhibitors, Peptide Hydrolase,Inhibitors, Peptide Peptidohydrolase,Inhibitors, Protease,Peptidohydrolase Inhibitor, Peptide,Peptidohydrolase Inhibitors, Peptide
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000515 alpha 1-Antitrypsin Plasma glycoprotein member of the serpin superfamily which inhibits TRYPSIN; NEUTROPHIL ELASTASE; and other PROTEOLYTIC ENZYMES. Trypsin Inhibitor, alpha 1-Antitrypsin,alpha 1-Protease Inhibitor,alpha 1-Proteinase Inhibitor,A1PI,Prolastin,Serpin A1,Zemaira,alpha 1 Antiprotease,alpha 1-Antiproteinase,1-Antiproteinase, alpha,Antiprotease, alpha 1,Inhibitor, alpha 1-Protease,Inhibitor, alpha 1-Proteinase,Trypsin Inhibitor, alpha 1 Antitrypsin,alpha 1 Antiproteinase,alpha 1 Antitrypsin,alpha 1 Protease Inhibitor,alpha 1 Proteinase Inhibitor
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

A J Wolfson, and M Kanaoka, and F Lau, and D Ringe, and P Young, and J Lee, and J Blumenthal
September 2012, Biochimie,
A J Wolfson, and M Kanaoka, and F Lau, and D Ringe, and P Young, and J Lee, and J Blumenthal
March 1987, Journal of biochemistry,
A J Wolfson, and M Kanaoka, and F Lau, and D Ringe, and P Young, and J Lee, and J Blumenthal
January 1992, Journal of neuropathology and experimental neurology,
A J Wolfson, and M Kanaoka, and F Lau, and D Ringe, and P Young, and J Lee, and J Blumenthal
March 2000, Biochimica et biophysica acta,
A J Wolfson, and M Kanaoka, and F Lau, and D Ringe, and P Young, and J Lee, and J Blumenthal
January 1992, Life sciences,
A J Wolfson, and M Kanaoka, and F Lau, and D Ringe, and P Young, and J Lee, and J Blumenthal
May 1991, The EMBO journal,
A J Wolfson, and M Kanaoka, and F Lau, and D Ringe, and P Young, and J Lee, and J Blumenthal
December 1998, Biochemical and biophysical research communications,
A J Wolfson, and M Kanaoka, and F Lau, and D Ringe, and P Young, and J Lee, and J Blumenthal
February 1991, Diabetes,
A J Wolfson, and M Kanaoka, and F Lau, and D Ringe, and P Young, and J Lee, and J Blumenthal
September 1987, Journal of immunology (Baltimore, Md. : 1950),
A J Wolfson, and M Kanaoka, and F Lau, and D Ringe, and P Young, and J Lee, and J Blumenthal
August 1992, Archives of biochemistry and biophysics,
Copied contents to your clipboard!