Arsenic efflux governed by the arsenic resistance determinant of Staphylococcus aureus plasmid pI258. 1993

S Bröer, and G Ji, and A Bröer, and S Silver
Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago 60612-7344.

The arsenic resistance operon of Staphylococcus aureus plasmid pI258 determined lowered net cellular uptake of 73As by an active efflux mechanism. Arsenite was exported from the cells; intracellular arsenate was first reduced to arsenite and then transported out of the cells. Resistant cells showed lower accumulation of 73As originating from both arsenate and arsenite. Active efflux from cells loaded with arsenite required the presence of the plasmid-determined arsB gene. Efflux of arsenic originating as arsenate required the presence of the arsC gene and occurred more rapidly with the addition of arsB. Inhibitor studies with S. aureus loaded with arsenite showed that arsenite efflux was energy dependent and appeared to be driven by the membrane potential. With cells loaded with 73AsO4(3-), a requirement for ATP for energy was observed, leading to the conclusion that ATP was required for arsenate reduction. When the staphylococcal arsenic resistance determinant was cloned into Escherichia coli, lowered accumulation of arsenate and arsenite and 73As efflux from cells loaded with arsenate were also found. Cloning of the E. coli plasmid R773 arsA gene (the determinant of the arsenite-dependent ATPase) in trans to the S. aureus gene arsB resulted in increased resistance to arsenite.

UI MeSH Term Description Entries
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D001149 Arsenates Inorganic or organic salts and esters of arsenic acid.

Related Publications

S Bröer, and G Ji, and A Bröer, and S Silver
August 1991, Journal of bacteriology,
S Bröer, and G Ji, and A Bröer, and S Silver
December 1991, Journal of bacteriology,
S Bröer, and G Ji, and A Bröer, and S Silver
August 1991, Canadian journal of microbiology,
S Bröer, and G Ji, and A Bröer, and S Silver
June 1992, Journal of bacteriology,
S Bröer, and G Ji, and A Bröer, and S Silver
December 1991, Journal of bacteriology,
S Bröer, and G Ji, and A Bröer, and S Silver
June 1993, FEMS microbiology letters,
S Bröer, and G Ji, and A Bröer, and S Silver
November 1992, Journal of bacteriology,
S Bröer, and G Ji, and A Bröer, and S Silver
May 1989, Proceedings of the National Academy of Sciences of the United States of America,
S Bröer, and G Ji, and A Bröer, and S Silver
October 1992, Proceedings of the National Academy of Sciences of the United States of America,
S Bröer, and G Ji, and A Bröer, and S Silver
August 1981, Journal of bacteriology,
Copied contents to your clipboard!