Epithelial cell detachment in the nephrotic glomerulus: a receptor co-operativity model. 1993

C R Cho, and C J Lumsden, and C I Whiteside
Membrane Biology Group, University of Toronto, Ontario, Canada.

Detachment of epithelial cells from the glomerular capillary wall correlates with the massive increase in protein leakage across the capillary wall that is characteristic of many renal diseases. We introduce the hypothesis that this detachment process involves three classes of physical events acting at the subcellular level: the receptor-mediated binding of epithelial cells to basement membrane, the transglomerular hydraulic pressure gradient acting to lift the cells off the basement membrane, and a receptor-receptor co-operativity induced by mechanical deformations of the epithelial cell surface. After presenting the available evidence, we explore the hypothesis by means of a simplified, quantitative model of the detachment process. The model is developed by mapping between the stochastic events of cell adhesion receptor binding and the equilibrium statistical mechanics of the Ising model. Monte Carlo simulations predict cell attachment under normal conditions, as expected from experimental data, and detachment at lower receptor binding affinity and/or increased pressure gradient. The normal attached state in the model is found to be particularly sensitive to changes in the receptor-binding affinity. The amount of resistance the cell surface offers to deformation forces is a key determinant of whether the detachment of small clusters of receptors spreads to involve large areas of the plasma membrane, precipitating bulk detachment.

UI MeSH Term Description Entries
D007678 Kidney Glomerulus A cluster of convoluted capillaries beginning at each nephric tubule in the kidney and held together by connective tissue. Glomerulus, Kidney
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009401 Nephrosis Pathological processes of the KIDNEY without inflammatory or neoplastic components. Nephrosis may be a primary disorder or secondary complication of other diseases. It is characterized by the NEPHROTIC SYNDROME indicating the presence of PROTEINURIA and HYPOALBUMINEMIA with accompanying EDEMA. Nephroses
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D016023 Integrins A family of transmembrane glycoproteins (MEMBRANE GLYCOPROTEINS) consisting of noncovalent heterodimers. They interact with a wide variety of ligands including EXTRACELLULAR MATRIX PROTEINS; COMPLEMENT, and other cells, while their intracellular domains interact with the CYTOSKELETON. The integrins consist of at least three identified families: the cytoadhesin receptors (RECEPTORS, CYTOADHESIN), the leukocyte adhesion receptors (RECEPTORS, LEUKOCYTE ADHESION), and the VERY LATE ANTIGEN RECEPTORS. Each family contains a common beta-subunit (INTEGRIN BETA CHAINS) combined with one or more distinct alpha-subunits (INTEGRIN ALPHA CHAINS). These receptors participate in cell-matrix and cell-cell adhesion in many physiologically important processes, including embryological development; HEMOSTASIS; THROMBOSIS; WOUND HEALING; immune and nonimmune defense mechanisms; and oncogenic transformation. Integrin

Related Publications

C R Cho, and C J Lumsden, and C I Whiteside
August 1976, Biochemical pharmacology,
C R Cho, and C J Lumsden, and C I Whiteside
February 2012, Biochemical Society transactions,
C R Cho, and C J Lumsden, and C I Whiteside
September 1983, Journal of theoretical biology,
C R Cho, and C J Lumsden, and C I Whiteside
August 1959, British medical journal,
C R Cho, and C J Lumsden, and C I Whiteside
April 1972, Journal of theoretical biology,
C R Cho, and C J Lumsden, and C I Whiteside
June 1973, Journal of theoretical biology,
C R Cho, and C J Lumsden, and C I Whiteside
January 1987, Journal of theoretical biology,
C R Cho, and C J Lumsden, and C I Whiteside
June 1973, Journal of molecular biology,
C R Cho, and C J Lumsden, and C I Whiteside
January 2013, Nature communications,
C R Cho, and C J Lumsden, and C I Whiteside
December 1974, The American journal of pathology,
Copied contents to your clipboard!