Aromatic side-chain contribution to far-ultraviolet circular dichroism of helical peptides and its effect on measurement of helix propensities. 1993

A Chakrabartty, and T Kortemme, and S Padmanabhan, and R L Baldwin
Department of Biochemistry, Stanford University School of Medicine, California 94305.

Peptides of the sequence Ac-XKAAAAKAAAAKAAAAK-amide, where X is Tyr, Trp, or Ala, produce circular dichroism spectra that are typical of the alpha-helix; there are, however, significant differences between the Tyr, Trp, or Ala peptides in the magnitudes of the far-ultraviolet bands. A tyrosine or tryptophan residue is needed in each peptide in order to measure accurately the peptide concentration and the mean residue ellipticity. The N- or C-terminal position is chosen because helix fraying is greatest at each end and the Tyr or Trp residue should influence the helix content of the peptide least at these positions. Amide proton exchange measurements by proton nuclear magnetic resonance spectroscopy indicate that the Tyr, Trp, and Ala peptides possess similar amounts of H-bonded secondary structure. Comparison of the far-ultraviolet circular dichroism and absorption spectra of these peptides suggests that the differences in circular dichroism arise in each case from an induced aromatic circular dichroism band, which is positive for Tyr and negative for Trp. Insertion of one to three Gly residues between the aromatic residue and the rest of the helical sequence reduces the induced aromatic band to insignificant levels. Using this procedure of inserting Gly residues between the Tyr and the rest of the helical sequence, we remeasured the helix propensity of Gly. We find that the Ala:Gly ratio of helix propensities is 40, as opposed to our previous estimate of 100 determined using the Tyr peptide without considering the aromatic contribution of Tyr in the analysis [Chakrabartty, A., Schellman, J. A., & Baldwin, R. L. (1991) Nature 351, 586-588].

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D000409 Alanine A non-essential amino acid that occurs in high levels in its free state in plasma. It is produced from pyruvate by transamination. It is involved in sugar and acid metabolism, increases IMMUNITY, and provides energy for muscle tissue, BRAIN, and the CENTRAL NERVOUS SYSTEM. Abufène,Alanine, L-Isomer,L-Alanine,Alanine, L Isomer,L Alanine,L-Isomer Alanine
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D013056 Spectrophotometry, Ultraviolet Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Ultraviolet Spectrophotometry
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D014364 Tryptophan An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals. Ardeydorm,Ardeytropin,L-Tryptophan,L-Tryptophan-ratiopharm,Levotryptophan,Lyphan,Naturruhe,Optimax,PMS-Tryptophan,Trofan,Tryptacin,Tryptan,Tryptophan Metabolism Alterations,ratio-Tryptophan,L Tryptophan,L Tryptophan ratiopharm,PMS Tryptophan,ratio Tryptophan
D014443 Tyrosine A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin. L-Tyrosine,Tyrosine, L-isomer,para-Tyrosine,L Tyrosine,Tyrosine, L isomer,para Tyrosine

Related Publications

A Chakrabartty, and T Kortemme, and S Padmanabhan, and R L Baldwin
October 2002, Journal of the American Chemical Society,
A Chakrabartty, and T Kortemme, and S Padmanabhan, and R L Baldwin
January 1978, Methods in enzymology,
A Chakrabartty, and T Kortemme, and S Padmanabhan, and R L Baldwin
April 2011, The journal of physical chemistry. B,
A Chakrabartty, and T Kortemme, and S Padmanabhan, and R L Baldwin
January 1994, European biophysics journal : EBJ,
A Chakrabartty, and T Kortemme, and S Padmanabhan, and R L Baldwin
January 1978, Science (New York, N.Y.),
A Chakrabartty, and T Kortemme, and S Padmanabhan, and R L Baldwin
April 1968, Archives of biochemistry and biophysics,
A Chakrabartty, and T Kortemme, and S Padmanabhan, and R L Baldwin
October 1993, Biochemistry,
A Chakrabartty, and T Kortemme, and S Padmanabhan, and R L Baldwin
January 1968, Biochimica et biophysica acta,
A Chakrabartty, and T Kortemme, and S Padmanabhan, and R L Baldwin
October 1991, Journal of molecular biology,
Copied contents to your clipboard!