Repression of RNA polymerase III transcription by adenovirus E1A. 1993

K Sollerbrant, and G Akusjärvi, and C Svensson
Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden.

Adenovirus E1A encodes two major proteins of 289 and 243 amino acids (289R and 243R), which both have transcription regulatory properties. E1A-289R is a transactivator whereas E1A-243R primarily functions as a repressor of transcription. Here we show that E1A repression is not restricted to RNA polymerase II genes but also includes the adenovirus virus-associated (VA) RNA genes. These genes are transcribed by RNA polymerase III and have previously been suggested to be the target of an E1A-289R-mediated transactivation. Surprisingly, we found that during transient transfection both E1A proteins repressed VA RNA transcription. E1A repression of VA RNA transcription required both conserved regions 1 and 2 and therefore differed from the E1A-mediated inhibition of simian virus 40 enhancer activity which primarily required conserved region 1. The repression was counteracted by the E1B-19K protein, which also, in the absence of E1A, enhanced the accumulation of VA RNA. Importantly, we show that efficient VA RNA transcription requires expression of both E1A and the E1B-19K protein during virus infection.

UI MeSH Term Description Entries
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002522 Chlorocebus aethiops A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research. African Green Monkey,Cercopithecus aethiops,Cercopithecus griseoviridis,Cercopithecus griseus,Cercopithecus pygerythrus,Cercopithecus sabeus,Cercopithecus tantalus,Chlorocebus cynosuros,Chlorocebus cynosurus,Chlorocebus pygerythrus,Green Monkey,Grivet Monkey,Lasiopyga weidholzi,Malbrouck,Malbrouck Monkey,Monkey, African Green,Monkey, Green,Monkey, Grivet,Monkey, Vervet,Savanah Monkey,Vervet Monkey,Savannah Monkey,African Green Monkey,Chlorocebus cynosuro,Green Monkey, African,Green Monkeys,Grivet Monkeys,Malbrouck Monkeys,Malbroucks,Monkey, Malbrouck,Monkey, Savanah,Monkey, Savannah,Savannah Monkeys,Vervet Monkeys
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012319 RNA Polymerase II A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. It functions in the nucleoplasmic structure and transcribes DNA into RNA. It has different requirements for cations and salt than RNA polymerase I and is strongly inhibited by alpha-amanitin. EC 2.7.7.6. DNA-Dependent RNA Polymerase II,RNA Pol II,RNA Polymerase B,DNA Dependent RNA Polymerase II
D012320 RNA Polymerase III A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. It functions in the nucleoplasmic structure where it transcribes DNA into RNA. It has specific requirements for cations and salt and has shown an intermediate sensitivity to alpha-amanitin in comparison to RNA polymerase I and II. DNA-Dependent RNA Polymerase III,RNA Polymerase C,DNA Dependent RNA Polymerase III,Polymerase C, RNA,Polymerase III, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA

Related Publications

K Sollerbrant, and G Akusjärvi, and C Svensson
July 1985, Cell,
K Sollerbrant, and G Akusjärvi, and C Svensson
January 2015, Mobile genetic elements,
K Sollerbrant, and G Akusjärvi, and C Svensson
January 1995, Current topics in microbiology and immunology,
K Sollerbrant, and G Akusjärvi, and C Svensson
October 2010, Cell,
K Sollerbrant, and G Akusjärvi, and C Svensson
January 2004, Progress in nucleic acid research and molecular biology,
K Sollerbrant, and G Akusjärvi, and C Svensson
July 1996, Nature,
K Sollerbrant, and G Akusjärvi, and C Svensson
March 2020, Nature structural & molecular biology,
K Sollerbrant, and G Akusjärvi, and C Svensson
April 2003, Journal of virology,
K Sollerbrant, and G Akusjärvi, and C Svensson
February 2005, The Journal of biological chemistry,
Copied contents to your clipboard!