Early opsin expression in Xenopus embryos precedes photoreceptor differentiation. 1993

M S Saha, and R M Grainger
Department of Biology University of Virginia Charlottesville 22903.

The visual pigment which serves as the first step in the phototransduction cycle in vertebrate rod cells consists of a retinal chromophore which is linked to the transmembrane protein, opsin. Opsin genes have been isolated from a number of different organisms and studies have shown opsin to be developmentally regulated with both mRNA and protein expression associated with the morphological differentiation of photoreceptor cells. Due to its potential utility as a marker for rod photoreceptor determination in studies of retinal tissue interactions, and because no amphibian opsin genes have as yet been cloned, we isolated cDNA clones of the Xenopus laevis opsin gene. Sequence analysis shows that within the coding region Xenopus opsin shares a high degree of identity with other rod opsin genes, except at the C-terminal where it more closely resembles the mammalian color opsins. A developmental analysis, on the other hand, reveals that Xenopus opsin transcripts are detectable in a retina-specific fashion early in retinal development. Using in situ hybridization we find that Xenopus opsin mRNA is initially restricted to a few isolated cells in the presumptive photoreceptor layer which express the gene at relatively high levels. This suggests that rod photoreceptor determination occurs in single cells, and that the mechanisms controlling opsin expression in Xenopus are initiated well before any evidence of morphological differentiation.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

M S Saha, and R M Grainger
October 2010, Developmental dynamics : an official publication of the American Association of Anatomists,
M S Saha, and R M Grainger
August 2008, Biochemical and biophysical research communications,
M S Saha, and R M Grainger
January 1992, Development (Cambridge, England),
M S Saha, and R M Grainger
February 1993, Zoological science,
M S Saha, and R M Grainger
September 1987, Development (Cambridge, England),
M S Saha, and R M Grainger
December 1992, Roux's archives of developmental biology : the official organ of the EDBO,
M S Saha, and R M Grainger
August 2001, Developmental biology,
M S Saha, and R M Grainger
November 2008, European journal of cell biology,
M S Saha, and R M Grainger
June 1988, Development (Cambridge, England),
M S Saha, and R M Grainger
June 2002, Journal of biochemistry,
Copied contents to your clipboard!