Induction of only one SOS operon, umuDC, is required for SOS mutagenesis in Escherichia coli. 1993

S Sommer, and J Knezevic, and A Bailone, and R Devoret
Laboratoire d'Enzymologie, CNRS, Gif-sur-Yvette, France.

The actions of UmuDC and RecA proteins, respectively in SOS mutagenesis are studied here with the following experimental strategy. We used lexAl (Ind-) bacteria to maintain all SOS proteins at their basal concentrations and then selectively increased the concentration of either UmuDC or RecA protein. For this purpose, we isolated operator-constitutive mutations oc in the umuDC and umuD'C operons and also used the oc98-recA mutation. The oc1-umuDC mutation prevents LexA repressor from binding to the operator and improves the Pribnow box consensus sequence. As a result, 5000 UmuD and 500 UmuC molecules per cell were produced in lexAl bacteria. This concentration is sufficient to restore SOS mutagenesis. The level of RecA protein present in the repressed state promoted full UmuD cleavage. Overproduction of RecA alone did not promote SOS mutagenesis. Increasing the level of RecA in the presence of high concentrations of UmuDC proteins has no further effect on SOS mutagenesis. We conclude that, after DNA damage, umuDC is the only SOS operon that must be induced in Escherichia coli to promote SOS mutagenesis.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009875 Operator Regions, Genetic The regulatory elements of an OPERON to which activators or repressors bind thereby effecting the transcription of GENES in the operon. Operator Region,Operator Regions,Operator, Genetic,Genetic Operator,Genetic Operator Region,Genetic Operator Regions,Genetic Operators,Operator Region, Genetic,Operators, Genetic,Region, Genetic Operator,Region, Operator,Regions, Genetic Operator,Regions, Operator
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011938 Rec A Recombinases A family of recombinases initially identified in BACTERIA. They catalyze the ATP-driven exchange of DNA strands in GENETIC RECOMBINATION. The product of the reaction consists of a duplex and a displaced single-stranded loop, which has the shape of the letter D and is therefore called a D-loop structure. Rec A Protein,RecA Protein,Recombinases, Rec A
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

S Sommer, and J Knezevic, and A Bailone, and R Devoret
August 1988, Molecular & general genetics : MGG,
S Sommer, and J Knezevic, and A Bailone, and R Devoret
April 1998, Genetics,
S Sommer, and J Knezevic, and A Bailone, and R Devoret
February 2001, Journal of bacteriology,
S Sommer, and J Knezevic, and A Bailone, and R Devoret
November 1992, Molecular & general genetics : MGG,
S Sommer, and J Knezevic, and A Bailone, and R Devoret
December 1991, Carcinogenesis,
S Sommer, and J Knezevic, and A Bailone, and R Devoret
March 1992, Mutation research,
S Sommer, and J Knezevic, and A Bailone, and R Devoret
July 1985, Proceedings of the National Academy of Sciences of the United States of America,
S Sommer, and J Knezevic, and A Bailone, and R Devoret
September 1993, Journal of bacteriology,
S Sommer, and J Knezevic, and A Bailone, and R Devoret
August 2019, The Journal of antimicrobial chemotherapy,
S Sommer, and J Knezevic, and A Bailone, and R Devoret
January 1990, Mutagenesis,
Copied contents to your clipboard!