Degeneration of germ cells in normal, hypophysectomized and hormone treated hypophysectomized rats. 1977

L D Russell, and Y Clermont

In normal adult rats some germ cells degenerate at several vulnerable steps of spermatogenesis. These are the type A spermatogonia, midpachytene spermatocytes, primary and secondary spermatocytes which degenerate during their respective maturation divisions and step 7 and 19 spermatitids. In the present study, these degenerating cells were examined under the electron microscope, and their frequency was determined in toluidine blue stained semithin sections of testes from normal, hypophysectomized (at 5.5 days after operation) and hypophysectomized rats injected with FSH and LH separately or in combination. With the exception of the step 19 spermatids, the degenerating germ cells underwent necrosis in vacuolated spaces delimited by Sertoli cells. In the case of the affected step 19 spermatids, an apical cytoplasmic process of the Sertoli cell initially ensheathed a long segment of their flagellum, and then each degeneration cell was drawn deep in the seminiferous epithelium where it was phagocytozed by the Sertoli cell. Soon after hypophysectomy the incidence of degenerating mid-pachytene spermatocytes, step 7 and 19 spermatids which are present in stages VII or VIII of the cycle of the seminiferous epithelium, increased significantly. In contrast the number of degenerating primary or secondary spermatocytes during the meiotic divisions seen in stage XIV of the cycle or of any other germinal cell was not significantly modified. While the injection of FSH alone had no influence on the number of degenerating cells in hypophysectomized rats, injections of LH at the two doses administered (0.7 microng or 20 microng) reduced significantly the number of degenerating cells seen in stages VII-VIII of the cycle; combined injections of FSH and LH (20 microng) reduced the number of these degenerating cells to the normal low values. Thus it appeared that the mid-pachytene spermatocytes and the step 7 and 19 spermatids, all present in the adluminal compartment of the seminiferous epithelium in stages VII or VIII of the cycle, were more sensitive to the presence of absence of gonadotropic hormones than the other germ cells present in the seminiferous epithelium.

UI MeSH Term Description Entries
D007016 Hypophysectomy Surgical removal or destruction of the hypophysis, or pituitary gland. (Dorland, 28th ed) Hypophysectomies
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D008297 Male Males
D008540 Meiosis A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells. M Phase, Meiotic,Meiotic M Phase,M Phases, Meiotic,Meioses,Meiotic M Phases,Phase, Meiotic M,Phases, Meiotic M
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009336 Necrosis The death of cells in an organ or tissue due to disease, injury or failure of the blood supply.
D005640 Follicle Stimulating Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity. FSH (Follicle Stimulating Hormone),Follicle-Stimulating Hormone,Follitropin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012670 Seminiferous Epithelium The epithelium lining the seminiferous tubules composed of primary male germ cells (SPERMATOGONIA) and supporting SERTOLI CELLS. As SPERMATOGENESIS proceeds, the developing germ cells migrate toward the lumen. The adluminal compartment, the inner two thirds of the tubules, contains SPERMATOCYTES and the more advanced germ cells. Epithelium, Seminiferous,Epitheliums, Seminiferous,Seminiferous Epitheliums
D012671 Seminiferous Tubules The convoluted tubules in the TESTIS where sperm are produced (SPERMATOGENESIS) and conveyed to the RETE TESTIS. Spermatogenic tubules are composed of developing germ cells and the supporting SERTOLI CELLS. Seminiferous Tubule,Tubule, Seminiferous,Tubules, Seminiferous

Related Publications

L D Russell, and Y Clermont
April 1970, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
L D Russell, and Y Clermont
October 1985, Experimental and molecular pathology,
L D Russell, and Y Clermont
January 1967, Endocrinology,
L D Russell, and Y Clermont
December 1963, The Journal of endocrinology,
L D Russell, and Y Clermont
January 1955, Experimental medicine and surgery,
L D Russell, and Y Clermont
March 1952, The American journal of physiology,
Copied contents to your clipboard!