Inhibition of mitochondrial and Paracoccus denitrificans NADH-ubiquinone reductase by oxacarbocyanine dyes. A structure-activity study. 1993

W M Anderson, and J M Wood, and A C Anderson
Indiana University School of Medicine, Northwest Center for Medical Education, Gary 46408.

In this study, we determined that three structurally related oxacarbocyanine dyes, 3,3'-diethyloxacarbocyanine (DiOC2(3)), 3,3'-dipentyloxacarbocyanine (DiOC5(3)), and 3,3'-dihexyloxacarbocyanine (DiOC6(3)), and one oxadicarbocyanine, 3,3'-diethyloxadicarbocyanine (DiOC2(4)), inhibit bovine heart mitochondrial NADH oxidase activity and one of them, DiOC6(3), inhibits Paracoccus denitrificans NADH oxidase activity. The mitochondrial I50 values were 9 microM (DiOC2(3)), approximately 1 microM (DiOC5(3)) and DiOC6(3)), and approximately 3 microM (DiOC2(4)), whereas the I50 value for P. denitrificans was approximately 2 microM (DiOC6(3)). Neither succinate nor cytochrome oxidase (EC 1.9.3.1) activity was inhibited significantly by any of the compounds in either electron transport chain, localizing the inhibitory site of the oxacarbocyanine dyes to the respiratory chain segment between NADH and ubiquinone. With submitochondrial particles (SMP), NADH-dependent reduction of duroquinone and coenzyme Q1 was inhibited markedly by all four compounds with DiOC6(3) being the most potent inhibitor, and the reduction of menadione was inhibited substantially by DiOC6(3). When purified complex I was used, NADH-dependent reduction of ferricyanide was inhibited by DiOC5(3) and coenzyme Q1 reduction was inhibited by all oxacarbocyanines. With P. denitrificans membrane vesicles, DiOC6(3) substantially inhibited NADH-dependent reduction of coenzyme Q1. All the oxacarbocyanines were more effective inhibitors with membrane preparations than with complex I, suggesting that membrane interactions play a role in inhibition. The mechanism of inhibition of the oxacarbocyanines appears to be similar to that of rotenone since (a) essentially only electron acceptors affected by rotenone were affected by the compounds, (b) inhibition of menadione reduction was diminished drastically with rotenone-saturated SMP, and (c) inhibition of coenzyme Q1 was largely eliminated with rotenone-insensitive complex I, and P. denitrificans membrane vesicles.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D010231 Paracoccus denitrificans A species of bacteria isolated from soil. Micrococcus denitrificans
D002232 Carbocyanines Compounds that contain three methine groups. They are frequently used as cationic dyes used for differential staining of biological materials. Carbocyanine
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004396 Coloring Agents Chemicals and substances that impart color including soluble dyes and insoluble pigments. They are used in INKS; PAINTS; and as INDICATORS AND REAGENTS. Coloring Agent,Dye,Dyes,Organic Pigment,Stain,Stains,Tissue Stain,Tissue Stains,Organic Pigments,Pigments, Inorganic,Agent, Coloring,Inorganic Pigments,Pigment, Organic,Pigments, Organic,Stain, Tissue,Stains, Tissue

Related Publications

W M Anderson, and J M Wood, and A C Anderson
September 1984, European journal of biochemistry,
W M Anderson, and J M Wood, and A C Anderson
February 1987, Biochemical Society transactions,
W M Anderson, and J M Wood, and A C Anderson
March 1988, Neuroscience letters,
W M Anderson, and J M Wood, and A C Anderson
August 1986, Biochemistry international,
W M Anderson, and J M Wood, and A C Anderson
August 1986, Biochemical and biophysical research communications,
W M Anderson, and J M Wood, and A C Anderson
February 1987, Biochemical and biophysical research communications,
Copied contents to your clipboard!