Interactions of tocopherols and ubiquinones with monolayers of phospholipids. 1977

B Maggio, and A T Diplock, and J A Lucy

1. The penetration of alpha-tocopherol and seven of its derivatives, and five compounds in the ubiquinone series, having differing chain lengths, into monolayers at the air/water interface of 11 different synthetic phospholipids and cholesterol was investigated; the properties of mixed monolayers of the tocopherols and of ubiquinones with phospholipids were also studied. 2. Penetration of alpha-tocopherol into diarachidonylglycerylphosphorycholine was approximately constant for molar ratios of tocopherol/phospholipid ranging from 0.4:1.0 to 2.0:1.0. 3. Tocopherols with shorter or longer side chains than alpha-tocopherol had a lesser ability to penetrate monolayers of phospholipid molecules with 16 or more carbon atoms in their acyl chains. 4. All the tocopherols penetrated more readily as unsaturation in the phospholipids was increased, and their penetration into mixed monolayers of phospholipids was greatly facilitated by the presence of relatively small quantities of unsaturated phospholipid molecules. 5. There was relatively little interaction between the tocopherols and cholesterol, or between the ubiquinones and phospholipids. 6. The possible significance of the observed interactions between alpha-tocopherol and polyunsaturated phospholipids is discussed in relation to the biochemical actions of alpha-tocopherol in vivo. 7. It is suggested that fluidity of the lipid bilayer in membranes containing polyunsaturated phospholipids may allow alpha-tocopherol to interact in a dynamic manner with a number of phospholipid molecules.

UI MeSH Term Description Entries
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D014451 Ubiquinone A lipid-soluble benzoquinone which is involved in ELECTRON TRANSPORT in mitochondrial preparations. The compound occurs in the majority of aerobic organisms, from bacteria to higher plants and animals. Coenzyme Q
D014810 Vitamin E A generic descriptor for all TOCOPHEROLS and TOCOTRIENOLS that exhibit ALPHA-TOCOPHEROL activity. By virtue of the phenolic hydrogen on the 2H-1-benzopyran-6-ol nucleus, these compounds exhibit varying degree of antioxidant activity, depending on the site and number of methyl groups and the type of ISOPRENOIDS.

Related Publications

B Maggio, and A T Diplock, and J A Lucy
April 1996, Journal of lipid research,
B Maggio, and A T Diplock, and J A Lucy
December 1978, The Biochemical journal,
B Maggio, and A T Diplock, and J A Lucy
October 1978, FEBS letters,
B Maggio, and A T Diplock, and J A Lucy
January 1985, The Italian journal of biochemistry,
B Maggio, and A T Diplock, and J A Lucy
January 2004, Zeitschrift fur Naturforschung. C, Journal of biosciences,
B Maggio, and A T Diplock, and J A Lucy
March 2021, Chemistry and physics of lipids,
B Maggio, and A T Diplock, and J A Lucy
May 2014, Langmuir : the ACS journal of surfaces and colloids,
B Maggio, and A T Diplock, and J A Lucy
January 1969, Biochimica et biophysica acta,
Copied contents to your clipboard!