Biphasic effects of cytosolic Ca2+ on Ins(1,4,5)P3-stimulated Ca2+ mobilization in hepatocytes. 1993

I C Marshall, and C W Taylor
Department of Pharmacology, Cambridge, United Kingdom.

The increase in cytosolic free Ca2+ concentration that follows mobilization of intracellular Ca2+ stores by inositol 1,4,5-trisphosphate Ins(1,4,5)P3 has been reported to modulate the sensitivity of Ins(1,4,5)P3 receptors. We have examined the effects of cytosolic Ca2+ on Ins(1,4,5)P3-stimulated Ca2+ mobilization in permeabilized hepatocytes. Increasing the free Ca2+ concentration in the medium ([Ca2+]m) caused a concentration-dependent increase in the sensitivity of the stores to Ins(1,4,5)P3; the concentration of Ins(1,4,5)P3 that caused half-maximal Ca2+ mobilization (EC50) decreased from 261 +/- 11 nM (n = 3) to 50 +/- 4 nM (n = 8) as [Ca2+]m was increased from approximately 7 nM to 1.6 microM. The EC50 for this effect of Ca2+ was approximately 250 nM. In addition, higher [Ca2+]m (> 600 nM) reduced the extent of Ca2+ release induced by a maximal concentration of Ins(1,4,5)P3; elevating [Ca2+]m to 2.6 microM reduced the proportion of Ca2+ releasable by Ins(1,4,5)P3 by 94 +/- 8% (n = 3). Both effects of Ca2+ were independent of Ca2(+)-stimulated Ins(1,4,5)P3 formation. When elevated [Ca2+]m was returned to control levels, the sensitization of Ins(1,4,5)P3-mediated Ca2+ mobilization reversed completely, whereas the reduction in the size of the Ins(1,4,5)P3-sensitive Ca2+ pool was reversed by only 59 +/- 12% (n = 5) after 20 s and was not further reversed after 100 s. The two distinct effects of Ca2+ on Ins(1,4,5)P3-mediated Ca2+ release combined to control the amount of Ca2+ released by a submaximal concentration of Ins(1,4,5)P3 in a biphasic manner.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013729 Terpenes A class of compounds composed of repeating 5-carbon units of HEMITERPENES. Isoprenoid,Terpene,Terpenoid,Isoprenoids,Terpenoids
D015544 Inositol 1,4,5-Trisphosphate Intracellular messenger formed by the action of phospholipase C on phosphatidylinositol 4,5-bisphosphate, which is one of the phospholipids that make up the cell membrane. Inositol 1,4,5-trisphosphate is released into the cytoplasm where it releases calcium ions from internal stores within the cell's endoplasmic reticulum. These calcium ions stimulate the activity of B kinase or calmodulin. 1,4,5-InsP3,Inositol 1,4,5-Triphosphate,Myo-Inositol 1,4,5-Trisphosphate,1,4,5-IP3,Myoinositol 1,4,5-Triphosphate
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats

Related Publications

I C Marshall, and C W Taylor
April 1991, Biochemical Society transactions,
I C Marshall, and C W Taylor
January 1988, Advances in experimental medicine and biology,
I C Marshall, and C W Taylor
August 1999, The Biochemical journal,
I C Marshall, and C W Taylor
February 2005, Journal of cellular physiology,
I C Marshall, and C W Taylor
September 1991, The Biochemical journal,
I C Marshall, and C W Taylor
March 1994, Clinical and experimental pharmacology & physiology,
I C Marshall, and C W Taylor
January 1992, Advances in second messenger and phosphoprotein research,
Copied contents to your clipboard!