Multiple domain structure in a chitinase gene (chiC) of Streptomyces lividans. 1993

T Fujii, and K Miyashita
Laboratory of Soil General Microbiology, National Institute of Agro-Environmental Sciences, Ibaraki, Japan.

One of the chitinases of Streptomyces lividans, chitinase C, was encoded by a 2 kb smaI-XhoI restriction fragment contained in the recombinant plasmid pEMJ7. DNA sequence analysis of this region revealed the presence of two open reading frames (ORF1 and ORF2) which had opposite orientations. Northern analysis showed that only the mRNA complementary to ORF1 was transcribed, and that this transcription was induced by chitin and repressed by glucose. ORF1 showed a codon distribution typical of Streptomyces. A sequence identical to that of the N-terminus of mature secreted chitinase C was found from amino acid residue 31 in the deduced amino acid sequence of ORF1 (619 amino acids), implying that ORF1 encodes a pre-protein of chitinase C. The pre-protein of chitinase C consisted of four discrete domains. The 30 amino acid N-terminal sequence, domain 1, was characteristic of a signal peptide. Domain 2 consisted of 105 N-terminal amino acids of mature chitinase C, and was similar to cellulose-binding domains of several cellulases. Domain 3 (94 amino acids) showed homology with type III homology units of fibronectin. Domain 4, a C-terminal 390 amino acid sequence, is probably the catalytic domain of the chitinase, since it exhibited identity with several other chitinolytic enzymes.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002688 Chitinases Glycoside hydrolases that break down glycosidic bonds in CHITIN. They are important for insect and worm morphogenesis and plant defense against pathogens. Human chitinases may play a role in the etiology of allergies and asthma. Chitinase,Endochitinase
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013302 Streptomyces A genus of bacteria that form a nonfragmented aerial mycelium. Many species have been identified with some being pathogenic. This genus is responsible for producing a majority of the ANTI-BACTERIAL AGENTS of practical value.
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

T Fujii, and K Miyashita
January 1988, Journal of bacteriology,
T Fujii, and K Miyashita
March 1989, Journal of bacteriology,
T Fujii, and K Miyashita
January 2018, Frontiers in microbiology,
T Fujii, and K Miyashita
March 1992, Bioscience, biotechnology, and biochemistry,
T Fujii, and K Miyashita
January 1986, Gene,
T Fujii, and K Miyashita
January 1998, DNA sequence : the journal of DNA sequencing and mapping,
Copied contents to your clipboard!