Kinetic models for unfolding and refolding of ribonuclease T1 with substitution of cis-proline 39 by alanine. 1993

L M Mayr, and F X Schmid
Laboratorium für Biochemie, Universität Bayreuth, Germany.

The replacement of cis proline 39 of ribonuclease T1 by an alanine residue leads to a decrease in stability by about 20 kJ/mol and to major changes in the folding kinetics that are not easily explained by the proline model for protein folding. In particular, a novel very slow reaction is observed in the refolding of the Pro39Ala variant. Here the unfolding and refolding kinetics of this protein are further investigated. We show that the very slow reaction is not a prolyl isomerization. It is not created by a slow isomerization of the unfolded protein, nor is it catalyzed by prolyl isomerase, and all molecules have to undergo this reaction during refolding. Most of the unfolded Pro39Ala molecules contain an incorrect trans isomer at the remaining cis Pro55. They use a sequential pathway for refolding, in which trans to cis isomerization at Pro55 precedes the very slow reaction. The refolding of the minor fraction of unfolded Pro39Ala molecules with a correct cis isomer at proline 55 is a single first-order reaction that is limited in rate by the very slow step. The folding mechanism of wild-type ribonuclease T1 cannot be used to explain these results and independent mechanisms are proposed to model the unfolding and refolding of the Pro39Ala variant. The molecular interpretation of the changes in the folding mechanism is tied to the question, as to whether the cis character of the peptide bond at position 38-39 is maintained after the substitution of Pro39 by alanine. A possible explanation could be that the novel very slow folding reaction involves the trans to cis isomerization of the Tyr38-Ala39 bond. Such a reaction is probably slow, since the activation energy is high and since tight coupling with the formation of structure is required to stabilize the cis form of a non-prolyl peptide bond. Alternatively, the strong decrease in folding rate could be correlated with the general destabilization of ribonuclease T1 by the Pro39Ala mutation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011392 Proline A non-essential amino acid that is synthesized from GLUTAMIC ACID. It is an essential component of COLLAGEN and is important for proper functioning of joints and tendons. L-Proline,L Proline
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D006163 Ribonuclease T1 An enzyme catalyzing the endonucleolytic cleavage of RNA at the 3'-position of a guanylate residue. EC 3.1.27.3. Guanyloribonuclease,RNase T1,Ribonuclease N1,Aspergillus oryzae Ribonuclease,Guanyl-Specific RNase,RNase Apl,RNase F1,RNase Pch 1,RNase ST,Ribonuclease F1,Ribonuclease F2,Ribonuclease ST,Ribonuclease T-1,T 1 RNase,Guanyl Specific RNase,RNase, Guanyl-Specific,RNase, T 1,Ribonuclease T 1,Ribonuclease, Aspergillus oryzae

Related Publications

L M Mayr, and F X Schmid
February 1986, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!