Crystallographic determination of the active site iron and its ligands in soybean lipoxygenase L-1. 1993

W Minor, and J Steczko, and J T Bolin, and Z Otwinowski, and B Axelrod
Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907.

Five ligands of the active site iron atom in soybean lipoxygenase L-1 have been identified from the electron density map of the crystallized enzyme. The position of the iron atom can be readily and independently located from an anomalous difference electron density map. The ligands identified are His-499, His-504, His-690, Asn-694, and Ile-839, the carboxy-terminal residue. Our previous view that these three histidines are essential for activity and binding of iron, based on site-specific mutation studies, is confirmed. A sixth protein ligand is not present, and the sixth coordination site opens into a wide cleft. The structure of the soybean lipoxygenase was solved by multiple anomalous isomorphous replacements.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D008084 Lipoxygenase An enzyme of the oxidoreductase class primarily found in PLANTS. It catalyzes reactions between linoleate and other fatty acids and oxygen to form hydroperoxy-fatty acid derivatives. Lipoxidase,Linoleate-Oxygen Oxidoreductase,Lipoxygenase-1,Lipoxygenase-2,Linoleate Oxygen Oxidoreductase,Lipoxygenase 1,Lipoxygenase 2,Oxidoreductase, Linoleate-Oxygen
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013025 Glycine max An annual legume. The SEEDS of this plant are edible and used to produce a variety of SOY FOODS. Soy Beans,Soybeans,Bean, Soy,Beans, Soy,Soy Bean,Soybean
D014961 X-Ray Diffraction The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Xray Diffraction,Diffraction, X-Ray,Diffraction, Xray,Diffractions, X-Ray,Diffractions, Xray,X Ray Diffraction,X-Ray Diffractions,Xray Diffractions
D017386 Sequence Homology, Amino Acid The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species. Homologous Sequences, Amino Acid,Amino Acid Sequence Homology,Homologs, Amino Acid Sequence,Homologs, Protein Sequence,Homology, Protein Sequence,Protein Sequence Homologs,Protein Sequence Homology,Sequence Homology, Protein,Homolog, Protein Sequence,Homologies, Protein Sequence,Protein Sequence Homolog,Protein Sequence Homologies,Sequence Homolog, Protein,Sequence Homologies, Protein,Sequence Homologs, Protein
D017433 Protein Structure, Secondary The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to ALPHA-HELICES; BETA-STRANDS (which align to form BETA-SHEETS), or other types of coils. This is the first folding level of protein conformation. Secondary Protein Structure,Protein Structures, Secondary,Secondary Protein Structures,Structure, Secondary Protein,Structures, Secondary Protein

Related Publications

W Minor, and J Steczko, and J T Bolin, and Z Otwinowski, and B Axelrod
July 1992, Biochemical and biophysical research communications,
W Minor, and J Steczko, and J T Bolin, and Z Otwinowski, and B Axelrod
August 1988, Biochimica et biophysica acta,
W Minor, and J Steczko, and J T Bolin, and Z Otwinowski, and B Axelrod
September 1987, The Journal of biological chemistry,
W Minor, and J Steczko, and J T Bolin, and Z Otwinowski, and B Axelrod
August 1992, Biochemistry,
W Minor, and J Steczko, and J T Bolin, and Z Otwinowski, and B Axelrod
October 2004, Biochemistry,
W Minor, and J Steczko, and J T Bolin, and Z Otwinowski, and B Axelrod
July 1992, European journal of biochemistry,
W Minor, and J Steczko, and J T Bolin, and Z Otwinowski, and B Axelrod
September 1982, Biochemical and biophysical research communications,
W Minor, and J Steczko, and J T Bolin, and Z Otwinowski, and B Axelrod
December 1994, Biochemistry,
W Minor, and J Steczko, and J T Bolin, and Z Otwinowski, and B Axelrod
January 1975, Biochimica et biophysica acta,
W Minor, and J Steczko, and J T Bolin, and Z Otwinowski, and B Axelrod
May 1988, The Journal of biological chemistry,
Copied contents to your clipboard!