The effect of electrical currents and tobramycin on Pseudomonas aeruginosa biofilms. 1995

J Jass, and J W Costerton, and H M Lappin-Scott
Department of Biological Sciences, Hatherly Laboratories, University of Exeter, UK.

The combined use of antibiotics with low levels of electrical current has been reported to be more effective in controlling biofilms (the bioelectric effect) than antibiotics alone. An electrical colonisation cell was designed to study the effect of antibiotics on biofilms formed on a dialysis membrane away from the electrode surface. To avoid the electrochemical generation of toxic products, Pseudomonas aeruginosa biofilms were formed in minimal salts medium that excluded chloride-containing compounds. Under these conditions, electrical currents of up to 20 mA cm-2 did not prevent biofilm formation or have any detrimental effect on an established biofilm. Tobramycin alone at concentrations of 10 micrograms ml-1 did not affect the biofilm, but were significantly enhanced by 9 mA cm-2. The effect of tobramycin concentrations of 25 micrograms ml-1 were enhanced by a 15 mA cm-2 electrical current. In both cases higher levels of electrical current, up to 20 mA cm-2, did not further enhance the effect of the antibiotic. The possible mechanisms of action of the bioelectric effect have been reported to involve electrophoresis, iontophoresis and electroporesis, thus overcoming the biofilm biomass and cell wall barriers. Our results suggest that other factors may also be important, such as the metabolic activity and growth rate of the bacteria. Such factors may be critical in maximising antibiotic efficacy.

UI MeSH Term Description Entries
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D011552 Pseudomonas Infections Infections with bacteria of the genus PSEUDOMONAS. Infections, Pseudomonas,Pseudomonas aeruginosa Infection,Infection, Pseudomonas,Pseudomonas Infection,Pseudomonas aeruginosa Infections
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D004560 Electricity The physical effects involving the presence of electric charges at rest and in motion.
D004582 Electronics, Medical The research and development of ELECTRICAL EQUIPMENT AND SUPPLIES for such medical applications as diagnosis, therapy, research, anesthesia control, cardiac control, and surgery. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Medical Electronics
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D014031 Tobramycin An aminoglycoside, broad-spectrum antibiotic produced by Streptomyces tenebrarius. It is effective against gram-negative bacteria, especially the PSEUDOMONAS species. It is a 10% component of the antibiotic complex, NEBRAMYCIN, produced by the same species. Nebramycin Factor 6,Brulamycin,Nebcin,Nebicin,Obracin,Tobracin,Tobramycin Sulfate,Sulfate, Tobramycin

Related Publications

J Jass, and J W Costerton, and H M Lappin-Scott
December 1996, The Journal of antimicrobial chemotherapy,
J Jass, and J W Costerton, and H M Lappin-Scott
December 2017, The Journal of antimicrobial chemotherapy,
J Jass, and J W Costerton, and H M Lappin-Scott
August 2022, Drug delivery and translational research,
J Jass, and J W Costerton, and H M Lappin-Scott
January 2018, Pharmaceutical research,
J Jass, and J W Costerton, and H M Lappin-Scott
November 2017, Antimicrobial agents and chemotherapy,
J Jass, and J W Costerton, and H M Lappin-Scott
December 1998, The Journal of antimicrobial chemotherapy,
J Jass, and J W Costerton, and H M Lappin-Scott
July 2020, Pharmaceutics,
J Jass, and J W Costerton, and H M Lappin-Scott
March 2021, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences,
J Jass, and J W Costerton, and H M Lappin-Scott
January 2000, Chemotherapy,
J Jass, and J W Costerton, and H M Lappin-Scott
June 1992, Antimicrobial agents and chemotherapy,
Copied contents to your clipboard!