Anomalous rapid electrophoretic mobility of DNA containing triplet repeats associated with human disease genes. 1995

P D Chastain, and E E Eichler, and S Kang, and D L Nelson, and S D Levene, and R R Sinden
Department of Biochemistry and Biophysics, Texas A&M University, Houston 77030-3303, USA.

Eight human genetic diseases have been associated with the expansion of CTG or CGG triplet repeats. The molecular etiology behind expansion is unknown but may involve participation of an unusual DNA structure in replication, repair, or recombination. We show that DNA fragments containing CTG triplet repeats derived from the human myotonic dystrophy gene migrate up to 20% faster than expected in nondenaturing polyacrylamide gels, suggesting the presence of an unusual DNA helix structure within the CTG triplet repeats. The anomalous migration is dependent upon the number of triplet repeats, the length of the flanking DNA, and the percentage and temperature of the polyacrylamide. The effect could be reduced by the addition of actinomycin D. Applying a reptation model for electrophoresis, the results are consistent with a 20% increase in persistence length of the DNA. PCR products containing CTG or CGG repeats from the spinocerebellar ataxia type I gene (SCA1) or the fragile X FMR1 gene, respectively, also showed higher electrophoretic mobility. These are the first sequences of defined length for which a dramatic increase in mobility can be attributed to sequence-dependent structural elements in DNA.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009223 Myotonic Dystrophy Neuromuscular disorder characterized by PROGRESSIVE MUSCULAR ATROPHY; MYOTONIA, and various multisystem atrophies. Mild INTELLECTUAL DISABILITY may also occur. Abnormal TRINUCLEOTIDE REPEAT EXPANSION in the 3' UNTRANSLATED REGIONS of DMPK PROTEIN gene is associated with Myotonic Dystrophy 1. DNA REPEAT EXPANSION of zinc finger protein-9 gene intron is associated with Myotonic Dystrophy 2. Dystrophia Myotonica,Myotonic Dystrophy, Congenital,Myotonic Myopathy, Proximal,Steinert Disease,Congenital Myotonic Dystrophy,Dystrophia Myotonica 1,Dystrophia Myotonica 2,Myotonia Atrophica,Myotonia Dystrophica,Myotonic Dystrophy 1,Myotonic Dystrophy 2,PROMM (Proximal Myotonic Myopathy),Proximal Myotonic Myopathy,Ricker Syndrome,Steinert Myotonic Dystrophy,Steinert's Disease,Atrophica, Myotonia,Atrophicas, Myotonia,Congenital Myotonic Dystrophies,Disease, Steinert,Disease, Steinert's,Dystrophia Myotonica 2s,Dystrophia Myotonicas,Dystrophica, Myotonia,Dystrophicas, Myotonia,Dystrophies, Congenital Myotonic,Dystrophies, Myotonic,Dystrophy, Congenital Myotonic,Dystrophy, Myotonic,Dystrophy, Steinert Myotonic,Myopathies, Proximal Myotonic,Myopathy, Proximal Myotonic,Myotonia Atrophicas,Myotonia Dystrophicas,Myotonic Dystrophies,Myotonic Dystrophies, Congenital,Myotonic Dystrophy, Steinert,Myotonic Myopathies, Proximal,Myotonica, Dystrophia,Myotonicas, Dystrophia,PROMMs (Proximal Myotonic Myopathy),Proximal Myotonic Myopathies,Steinerts Disease,Syndrome, Ricker
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D003609 Dactinomycin A compound composed of a two CYCLIC PEPTIDES attached to a phenoxazine that is derived from STREPTOMYCES parvullus. It binds to DNA and inhibits RNA synthesis (transcription), with chain elongation more sensitive than initiation, termination, or release. As a result of impaired mRNA production, protein synthesis also declines after dactinomycin therapy. (From AMA Drug Evaluations Annual, 1993, p2015) Actinomycin,Actinomycin D,Meractinomycin,Cosmegen,Cosmegen Lyovac,Lyovac-Cosmegen,Lyovac Cosmegen,Lyovac, Cosmegen,LyovacCosmegen
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004587 Electrophoresis, Agar Gel Electrophoresis in which agar or agarose gel is used as the diffusion medium. Electrophoresis, Agarose Gel,Agar Gel Electrophoresis,Agarose Gel Electrophoresis,Gel Electrophoresis, Agar,Gel Electrophoresis, Agarose
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005600 Fragile X Syndrome A condition characterized genotypically by mutation of the distal end of the long arm of the X chromosome (at gene loci FRAXA or FRAXE) and phenotypically by cognitive impairment, hyperactivity, SEIZURES, language delay, and enlargement of the ears, head, and testes. INTELLECTUAL DISABILITY occurs in nearly all males and roughly 50% of females with the full mutation of FRAXA. (From Menkes, Textbook of Child Neurology, 5th ed, p226) FRAXA Syndrome,FRAXE Syndrome,Martin-Bell Syndrome,Fra(X) Syndrome,Fragile X Mental Retardation Syndrome,Fragile X-F Mental Retardation Syndrome,Mar (X) Syndrome,Marker X Syndrome,Mental Retardation, X-Linked, Associated With Fragile Site Fraxe,Mental Retardation, X-Linked, Associated With Marxq28,X-Linked Mental Retardation and Macroorchidism,FRAXA Syndromes,FRAXE Syndromes,Fragile X Syndromes,Marker X Syndromes,Martin Bell Syndrome,Syndrome, FRAXA,Syndrome, FRAXE,Syndrome, Fragile X,Syndrome, Marker X,Syndrome, Martin-Bell,Syndromes, FRAXA,Syndromes, FRAXE,Syndromes, Fragile X,Syndromes, Marker X,X Linked Mental Retardation and Macroorchidism

Related Publications

P D Chastain, and E E Eichler, and S Kang, and D L Nelson, and S D Levene, and R R Sinden
February 1999, American journal of human genetics,
P D Chastain, and E E Eichler, and S Kang, and D L Nelson, and S D Levene, and R R Sinden
October 1996, The New England journal of medicine,
P D Chastain, and E E Eichler, and S Kang, and D L Nelson, and S D Levene, and R R Sinden
February 1996, Molecular medicine today,
P D Chastain, and E E Eichler, and S Kang, and D L Nelson, and S D Levene, and R R Sinden
April 1982, Journal of molecular biology,
P D Chastain, and E E Eichler, and S Kang, and D L Nelson, and S D Levene, and R R Sinden
January 2001, Progress in nucleic acid research and molecular biology,
P D Chastain, and E E Eichler, and S Kang, and D L Nelson, and S D Levene, and R R Sinden
November 1992, Nature genetics,
P D Chastain, and E E Eichler, and S Kang, and D L Nelson, and S D Levene, and R R Sinden
July 1993, Trends in neurosciences,
P D Chastain, and E E Eichler, and S Kang, and D L Nelson, and S D Levene, and R R Sinden
February 1998, The Journal of biological chemistry,
P D Chastain, and E E Eichler, and S Kang, and D L Nelson, and S D Levene, and R R Sinden
November 1995, The Journal of biological chemistry,
P D Chastain, and E E Eichler, and S Kang, and D L Nelson, and S D Levene, and R R Sinden
March 1984, Gene,
Copied contents to your clipboard!