The source of brain adenosine outflow during ischemia and electrical stimulation. 1995

S Latini, and C Corsi, and F Pedata, and G Pepeu
Department of Preclinical and Clinical Pharmacology, University of Florence, Italy.

Adenosine outflow and adenosine and adenine nucleotide content of hippocampal slices were evaluated under two different experimental conditions: ischemia-like conditions and electrical stimulation (10 Hz). Five minutes of ischemia-like conditions brought about an 8-fold increase in adenosine outflow in the following 5 min during reperfusion, and a 2-fold increase in adenosine content, a 43% decrease in ATP, a 72% increase in AMP and a 30% decrease in energy charge (EC) at the end of the ischemic period. After 10 min of reperfusion ATP, AMP and EC returned to control values, while the adenosine content was further increased. Five minutes of electrical stimulation brought about an 8-fold increase in adenosine outflow that peaked 5 min after the end of stimulation, a 4-fold increase in adenosine content and an 18% decrease in tissue EC at the end of stimulation. After 10 min of rest conditions the adenosine content and EC returned to basal values. The origin of extracellular adenosine from S-adenosylhomocysteine (SAH) was examined under the two different experimental conditions. The SAH hydrolase inhibitor, adenosine-2,3-dialdehyde (10 microM), does not significantly modify the adenosine outflow evoked by electrical stimulation or ischemia-like conditions. This finding excludes a significant contribution by the transmethylation pathway to adenosine extracellular accumulation evoked by an electrical or ischemic stimulus, and confirms that the most likely source of adenosine is from AMP dephosphorylation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D002546 Ischemic Attack, Transient Brief reversible episodes of focal, nonconvulsive ischemic dysfunction of the brain having a duration of less than 24 hours, and usually less than one hour, caused by transient thrombotic or embolic blood vessel occlusion or stenosis. Events may be classified by arterial distribution, temporal pattern, or etiology (e.g., embolic vs. thrombotic). (From Adams et al., Principles of Neurology, 6th ed, pp814-6) Brain Stem Ischemia, Transient,Cerebral Ischemia, Transient,Crescendo Transient Ischemic Attacks,Transient Ischemic Attack,Anterior Circulation Transient Ischemic Attack,Brain Stem Transient Ischemic Attack,Brain TIA,Brainstem Ischemia, Transient,Brainstem Transient Ischemic Attack,Carotid Circulation Transient Ischemic Attack,Posterior Circulation Transient Ischemic Attack,TIA (Transient Ischemic Attack),Transient Ischemic Attack, Anterior Circulation,Transient Ischemic Attack, Brain Stem,Transient Ischemic Attack, Brainstem,Transient Ischemic Attack, Carotid Circulation,Transient Ischemic Attack, Posterior Circulation,Transient Ischemic Attack, Vertebrobasilar Circulation,Transient Ischemic Attacks, Crescendo,Vertebrobasilar Circulation Transient Ischemic Attack,Attack, Transient Ischemic,Attacks, Transient Ischemic,Brainstem Ischemias, Transient,Cerebral Ischemias, Transient,Ischemia, Transient Brainstem,Ischemia, Transient Cerebral,Ischemias, Transient Brainstem,Ischemias, Transient Cerebral,Ischemic Attacks, Transient,TIA, Brain,TIAs (Transient Ischemic Attack),Transient Brainstem Ischemia,Transient Cerebral Ischemia,Transient Cerebral Ischemias,Transient Ischemic Attacks
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D006867 Hydrolases Any member of the class of enzymes that catalyze the cleavage of the substrate and the addition of water to the resulting molecules, e.g., ESTERASES, glycosidases (GLYCOSIDE HYDROLASES), lipases, NUCLEOTIDASES, peptidases (PEPTIDE HYDROLASES), and phosphatases (PHOSPHORIC MONOESTER HYDROLASES). EC 3. Hydrolase
D000227 Adenine Nucleotides Adenine Nucleotide,Adenosine Phosphate,Adenosine Phosphates,Nucleotide, Adenine,Nucleotides, Adenine,Phosphate, Adenosine,Phosphates, Adenosine
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan

Related Publications

S Latini, and C Corsi, and F Pedata, and G Pepeu
June 1993, Brain research,
S Latini, and C Corsi, and F Pedata, and G Pepeu
September 2011, American journal of electroneurodiagnostic technology,
S Latini, and C Corsi, and F Pedata, and G Pepeu
January 1968, Transactions - American Society for Artificial Internal Organs,
S Latini, and C Corsi, and F Pedata, and G Pepeu
January 1992, Cerebrovascular and brain metabolism reviews,
S Latini, and C Corsi, and F Pedata, and G Pepeu
October 1979, Circulation research,
S Latini, and C Corsi, and F Pedata, and G Pepeu
May 2006, Stroke,
S Latini, and C Corsi, and F Pedata, and G Pepeu
December 1997, Brain research,
S Latini, and C Corsi, and F Pedata, and G Pepeu
September 1994, European journal of pharmacology,
S Latini, and C Corsi, and F Pedata, and G Pepeu
June 2006, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
S Latini, and C Corsi, and F Pedata, and G Pepeu
June 1999, Hypertension (Dallas, Tex. : 1979),
Copied contents to your clipboard!