A massive new posttranslational modification occurs on axonemal tubulin at the final step of spermatogenesis in Drosophila. 1995

C Bressac, and M H Bré, and J Darmanaden-Delorme, and M Laurent, and N Levilliers, and A Fleury
Laboratoire de Génétique Evolutive, URA 9034, CNRS, Gif-sur-Yvette, France.

Using two antibodies raised against Paramecium axonemal tubulin, a monoclonal antibody, AXO 49 (Callen et al., Biol. Cell 81, 95-119 (1994)), and a polyclonal antibody, PAT (Cohen et al., Biol. Cell 44, 35-44 (1982)), which have been shown elsewhere to detect a new posttranslational modification of tubulin presumably corresponding to polyglycylation, we have analyzed the occurrence of this modification during spermatogenesis in Drosophila. Results obtained by immunofluorescence on cysts isolated by laceration of testes showed that the antibodies reacted on axonemal microtubules of several species within the genus. Observation of different stages of differentiation of D. obscura sperm cells indicated, first, that the epitopes reactive with both antibodies appeared at late stages, and secondly, that they were detected simultaneously along all axonemes within a cyst. Immunofluorescence on semithin sections and electron microscopic immunocytochemistry on ultrathin sections confirmed that the appearance of the epitope recognized by the monoclonal antibody occurred at the time of the individualization process of spermatids in D. melanogaster. These results indicate that the posttranslational modification occurs as a very late event, after complete assembly of axonemal microtubules, and that the axonemal tubulin becomes modified when axonemal microtubules become coupled with the membrane, suggesting that the modification may in some way be induced by the microtubule-membrane interaction.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013091 Spermatogenesis The process of germ cell development in the male from the primordial germ cells, through SPERMATOGONIA; SPERMATOCYTES; SPERMATIDS; to the mature haploid SPERMATOZOA. Spermatocytogenesis,Spermiogenesis

Related Publications

C Bressac, and M H Bré, and J Darmanaden-Delorme, and M Laurent, and N Levilliers, and A Fleury
December 1994, Science (New York, N.Y.),
C Bressac, and M H Bré, and J Darmanaden-Delorme, and M Laurent, and N Levilliers, and A Fleury
July 1997, Journal of protein chemistry,
C Bressac, and M H Bré, and J Darmanaden-Delorme, and M Laurent, and N Levilliers, and A Fleury
September 1998, Molecular biology of the cell,
C Bressac, and M H Bré, and J Darmanaden-Delorme, and M Laurent, and N Levilliers, and A Fleury
February 1985, The Journal of cell biology,
C Bressac, and M H Bré, and J Darmanaden-Delorme, and M Laurent, and N Levilliers, and A Fleury
April 1996, The Journal of biological chemistry,
C Bressac, and M H Bré, and J Darmanaden-Delorme, and M Laurent, and N Levilliers, and A Fleury
September 1990, Proceedings of the National Academy of Sciences of the United States of America,
C Bressac, and M H Bré, and J Darmanaden-Delorme, and M Laurent, and N Levilliers, and A Fleury
September 1995, Journal of cell science,
C Bressac, and M H Bré, and J Darmanaden-Delorme, and M Laurent, and N Levilliers, and A Fleury
January 2012, International review of cell and molecular biology,
C Bressac, and M H Bré, and J Darmanaden-Delorme, and M Laurent, and N Levilliers, and A Fleury
June 2009, Developmental cell,
C Bressac, and M H Bré, and J Darmanaden-Delorme, and M Laurent, and N Levilliers, and A Fleury
January 1995, Developmental genetics,
Copied contents to your clipboard!