A novel transverse gradient coil design for high-resolution MR imaging. 1995

C F Maier, and K C Chu, and B A Chronik, and B K Rutt
Department of Medical Biophysics, University of Western Ontario London, Canada.

The authors describe a new gradient coil design for high resolution human, animal, specimen, or phantom imaging with high gradient efficiency and a large region of excellent gradient uniformity. Important features of our new design are the simple analytical description of the wire patterns that comprise the design, and ease of construction. Wires are spaced in a sinusoidal distribution around the circumference of the cylinder, and curved in an arcsin shape along the length of the cylinder. This coil produces a magnetic field pointing in a direction transverse to the axis of the coil with a gradient in the direction parallel to the axis of the coil. The same arcsin coil can be used to create a magnetic field pointing in a direction parallel to its axis with a gradient in a direction perpendicular to the coil axis. A prototype coil was constructed; field and inductance calculations were verified. Geometric variations on this coil design were modeled and their performance characteristics compared. This coil design is ideal for rapid implementation of a transverse gradient coil, since no specialized design software is required.

UI MeSH Term Description Entries
D007089 Image Enhancement Improvement of the quality of a picture by various techniques, including computer processing, digital filtering, echocardiographic techniques, light and ultrastructural MICROSCOPY, fluorescence spectrometry and microscopy, scintigraphy, and in vitro image processing at the molecular level. Image Quality Enhancement,Enhancement, Image,Enhancement, Image Quality,Enhancements, Image,Enhancements, Image Quality,Image Enhancements,Image Quality Enhancements,Quality Enhancement, Image,Quality Enhancements, Image
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008280 Magnetics The study of MAGNETIC PHENOMENA. Magnetic
D008961 Models, Structural A representation, generally small in scale, to show the structure, construction, or appearance of something. (From Random House Unabridged Dictionary, 2d ed) Model, Structural,Structural Model,Structural Models
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004574 Electromagnetic Fields Fields representing the joint interplay of electric and magnetic forces. Electromagnetic Field,Field, Electromagnetic,Fields, Electromagnetic
D004867 Equipment Design Methods and patterns of fabricating machines and related hardware. Design, Equipment,Device Design,Medical Device Design,Design, Medical Device,Designs, Medical Device,Device Design, Medical,Device Designs, Medical,Medical Device Designs,Design, Device,Designs, Device,Designs, Equipment,Device Designs,Equipment Designs
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C F Maier, and K C Chu, and B A Chronik, and B K Rutt
April 2019, Physics in medicine and biology,
C F Maier, and K C Chu, and B A Chronik, and B K Rutt
July 2020, Biomedical physics & engineering express,
C F Maier, and K C Chu, and B A Chronik, and B K Rutt
December 2016, Physics in medicine and biology,
C F Maier, and K C Chu, and B A Chronik, and B K Rutt
October 2023, Magnetic resonance in medicine,
C F Maier, and K C Chu, and B A Chronik, and B K Rutt
November 1991, Radiology,
C F Maier, and K C Chu, and B A Chronik, and B K Rutt
January 1987, Radiology,
C F Maier, and K C Chu, and B A Chronik, and B K Rutt
January 2006, Biomedical engineering online,
C F Maier, and K C Chu, and B A Chronik, and B K Rutt
December 1991, Radiology,
C F Maier, and K C Chu, and B A Chronik, and B K Rutt
April 1987, Radiology,
C F Maier, and K C Chu, and B A Chronik, and B K Rutt
January 2013, Journal of magnetic resonance (San Diego, Calif. : 1997),
Copied contents to your clipboard!