Function of Stat2 protein in transcriptional activation by alpha interferon. 1996

S A Qureshi, and S Leung, and I M Kerr, and G R Stark, and J E Darnell
Laboratory of Molecular Cell Biology, Rockefeller University, New York, New York 10021, USA.

Alpha interferon (IFN-alpha)-induced transcriptional activation requires the induction of a complex of DNA-binding proteins, including tyrosine-phosphorylated Stat1 and Stat2, and of p48, a protein which is not phosphorylated on tyrosine and which comes from a separate family of DNA-binding proteins. The isolation and characterization of U6A cells, which lack Stat2, have allowed the introduction of normal and mutant forms of Stat2 so that various functions of the Stat2 protein can be examined. As reported earlier, Stat1, which is the second target of tyrosine phosphorylation in IFN-alpha-treated cells, is not phosphorylated in the absence of Stat2. We show that all mutations that block Stat2 phosphorylation also block Stat1 phosphorylation. These include not only the mutations of Y-690 and SH2 domain residues that are involved in tyrosine phosphorylation but also short deletions at the amino terminus of the protein. Two mutants of Stat2 that are not phosphorylated on tyrosine can act as dominant negative proteins in suppressing wild-type Stat2 phosphorylation, most likely by competition at the receptor-kinase interaction site(s). We also show that the COOH-terminal 50 amino acids are required for transcriptional activation in response to IFN-alpha. Mutants lacking these amino acids can be phosphorylated, form IFN-stimulated gene factor 3, and translocate to the nucleus but cannot stimulate IFN-alpha-dependent transcription. Seven acidic residues are present in the deleted COOH-terminal residues, but 24 acidic residues still remain in the 100 carboxy-terminal amino acids after deletion. Thus, transcriptional activation is unlikely to depend on acidic amino acids alone.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015533 Transcriptional Activation Processes that stimulate the GENETIC TRANSCRIPTION of a gene or set of genes. Gene Activation,Genetic Induction,Transactivation,Induction, Genetic,Trans-Activation, Genetic,Transcription Activation,Activation, Gene,Activation, Transcription,Activation, Transcriptional,Genetic Trans-Activation,Trans Activation, Genetic
D015534 Trans-Activators Diffusible gene products that act on homologous or heterologous molecules of viral or cellular DNA to regulate the expression of proteins. Nuclear Trans-Acting Factor,Trans-Acting Factors,Trans-Acting Factor,Trans-Activator,Transactivator,Transactivators,Factor, Nuclear Trans-Acting,Factor, Trans-Acting,Factors, Trans-Acting,Nuclear Trans Acting Factor,Trans Acting Factor,Trans Acting Factors,Trans Activator,Trans Activators,Trans-Acting Factor, Nuclear
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses

Related Publications

S A Qureshi, and S Leung, and I M Kerr, and G R Stark, and J E Darnell
July 1988, Proceedings of the National Academy of Sciences of the United States of America,
S A Qureshi, and S Leung, and I M Kerr, and G R Stark, and J E Darnell
July 2013, JAK-STAT,
S A Qureshi, and S Leung, and I M Kerr, and G R Stark, and J E Darnell
May 2005, Journal of virology,
S A Qureshi, and S Leung, and I M Kerr, and G R Stark, and J E Darnell
September 2009, The Journal of biological chemistry,
S A Qureshi, and S Leung, and I M Kerr, and G R Stark, and J E Darnell
September 1996, Nature,
S A Qureshi, and S Leung, and I M Kerr, and G R Stark, and J E Darnell
March 2003, Journal of virology,
S A Qureshi, and S Leung, and I M Kerr, and G R Stark, and J E Darnell
July 1988, Proceedings of the National Academy of Sciences of the United States of America,
S A Qureshi, and S Leung, and I M Kerr, and G R Stark, and J E Darnell
March 2002, The Journal of biological chemistry,
S A Qureshi, and S Leung, and I M Kerr, and G R Stark, and J E Darnell
September 2002, Biochemistry,
S A Qureshi, and S Leung, and I M Kerr, and G R Stark, and J E Darnell
July 2009, Journal of virology,
Copied contents to your clipboard!