Effects of reverse transcriptase inhibitors on telomere length and telomerase activity in two immortalized human cell lines. 1996

C Strahl, and E H Blackburn
Department of Microbiology and Immunology, University of California, San Francisco 94143-0414, USA.

The ribonucleoprotein telomerase, a specialized cellular reverse transcriptase, synthesizes one strand of the telomeric DNA of eukaryotes. We analyzed telomere maintenance in two immortalized human cell lines: the B-cell line JY616 and the T-cell line Jurkat E6-1, and determined whether known inhibitors of retroviral reverse transcriptases could perturb telomere lengths and growth rates of these cells in culture. Dideoxyguanosine (ddG) caused reproducible, progressive telomere shortening over several weeks of passaging, after which the telomeres stabilized and remained short. However, the prolonged passaging in ddG caused no observable effects on cell population doubling rates or morphology. Azidothymidine (AZT) caused progressive telomere shortening in some but not all T- and B-cell cultures. Telomerase activity was present in both cell lines and was inhibited in vitro by ddGTP and AZT triphosphate. Prolonged passaging in arabinofuranyl-guanosine, dideoxyinosine (ddI), dideoxyadenosine (ddA), didehydrothymidine (d4T), or phosphonoformic acid (foscarnet) did not cause reproducible telomere shortening or decreased cell growth rates or viabilities. Combining AZT, foscarnet, and/or arabinofuranyl-guanosine with ddG did not significantly augment the effects of ddG alone. Strikingly, with or without inhibitors, telomere lengths were often highly unstable in both cell lines and varied between parallel cell cultures. We propose that telomere lengths in these T- and B-cell lines are determined by both telomerase and telomerase-independent mechanisms.

UI MeSH Term Description Entries
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000998 Antiviral Agents Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly. Antiviral,Antiviral Agent,Antiviral Drug,Antivirals,Antiviral Drugs,Agent, Antiviral,Agents, Antiviral,Drug, Antiviral,Drugs, Antiviral
D001087 Arabinonucleosides Nucleosides containing arabinose as their sugar moiety. Arabinofuranosylnucleosides
D013942 Thymine Nucleotides Phosphate esters of THYMIDINE in N-glycosidic linkage with ribose or deoxyribose, as occurs in nucleic acids. (From Dorland, 28th ed, p1154) Thymidine Phosphates,Nucleotides, Thymine,Phosphates, Thymidine
D015215 Zidovudine A dideoxynucleoside compound in which the 3'-hydroxy group on the sugar moiety has been replaced by an azido group. This modification prevents the formation of phosphodiester linkages which are needed for the completion of nucleic acid chains. The compound is a potent inhibitor of HIV replication, acting as a chain-terminator of viral DNA during reverse transcription. It improves immunologic function, partially reverses the HIV-induced neurological dysfunction, and improves certain other clinical abnormalities associated with AIDS. Its principal toxic effect is dose-dependent suppression of bone marrow, resulting in anemia and leukopenia. AZT (Antiviral),Azidothymidine,3'-Azido-2',3'-Dideoxythymidine,3'-Azido-3'-deoxythymidine,AZT Antiviral,AZT, Antiviral,BW A509U,BWA-509U,Retrovir,3' Azido 2',3' Dideoxythymidine,3' Azido 3' deoxythymidine,Antiviral AZT,BWA 509U,BWA509U

Related Publications

C Strahl, and E H Blackburn
September 2009, Liver international : official journal of the International Association for the Study of the Liver,
C Strahl, and E H Blackburn
November 2018, Genes, chromosomes & cancer,
Copied contents to your clipboard!