Footprinting of tRNA(Phe) transcripts from Thermus thermophilus HB8 with the homologous phenylalanyl-tRNA synthetase reveals a novel mode of interaction. 1995

R Kreutzer, and D Kern, and R Giegé, and J Rudinger
Lehrstuhl für Biochemie, Universität Bayreuth, Germany.

The phosphates of the tRNA(Phe) transcript from Thermus thermophilus interacting with the cognate synthetase were determined by footprinting. Backbone bond protection against cleavage by iodine of the phosphorothioate-containing transcripts was found in the anticodon stem-loop, the D stem-loop and the acceptor stem and weak protection was also seen in the variable loop. Most of the protected phosphates correspond to regions around known identity elements of tRNA(Phe). Enhancement of cleavage at certain positions indicates bending of tRNAPhe upon binding to the enzyme. When applied to the three-dimensional model of tRNA(Phe) from yeast the majority of the protections occur on the D loop side of the molecule, revealing that phenylalanyl-tRNA synthetase has a rather complex and novel pattern of interaction with tRNAPhe, differing from that of other known class II aminoacyl-tRNA synthetases.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008961 Models, Structural A representation, generally small in scale, to show the structure, construction, or appearance of something. (From Random House Unabridged Dictionary, 2d ed) Model, Structural,Structural Model,Structural Models
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D010652 Phenylalanine-tRNA Ligase An enzyme that activates phenylalanine with its specific transfer RNA. EC 6.1.1.20. Phenylalanyl T RNA Synthetase,Phe-tRNA Ligase,Phenylalanyl-tRNA Synthetase,Ligase, Phe-tRNA,Ligase, Phenylalanine-tRNA,Phe tRNA Ligase,Phenylalanine tRNA Ligase,Phenylalanyl tRNA Synthetase,Synthetase, Phenylalanyl-tRNA
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

R Kreutzer, and D Kern, and R Giegé, and J Rudinger
June 1993, Journal of molecular biology,
R Kreutzer, and D Kern, and R Giegé, and J Rudinger
April 1987, Bioorganicheskaia khimiia,
R Kreutzer, and D Kern, and R Giegé, and J Rudinger
December 1987, Journal of molecular biology,
R Kreutzer, and D Kern, and R Giegé, and J Rudinger
November 1996, Protein expression and purification,
R Kreutzer, and D Kern, and R Giegé, and J Rudinger
April 1992, Biochimie,
R Kreutzer, and D Kern, and R Giegé, and J Rudinger
October 1992, FEBS letters,
R Kreutzer, and D Kern, and R Giegé, and J Rudinger
July 1995, Nature structural biology,
R Kreutzer, and D Kern, and R Giegé, and J Rudinger
August 1992, Nucleic acids research,
R Kreutzer, and D Kern, and R Giegé, and J Rudinger
September 1998, Biochemistry. Biokhimiia,
Copied contents to your clipboard!