Sequence analysis of the Lactococcus lactis temperate bacteriophage BK5-T and demonstration that the phage DNA has cohesive ends. 1995

J D Boyce, and B E Davidson, and A J Hillier
Russell Grimwade School of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.

The Lactococcus lactis temperate bacteriophage BK5-T is a type phage in the lactococcal phage classification (A. W. Jarvis, G. F. Fitzgerald, M. Mata, A. Mercenier, H. Neve, I. B. Powell, C. Ronda, M. Saxelin, and M. Teuber, Intervirology 32:2-9, 1991). The nucleotide sequence of 18,935 bp of the genome of BK5-T was determined and analyzed for the presence of open reading frames and other structural features. Thirty-two open reading frames longer than 60 codons were identified, and these appeared to be grouped into at least seven transcriptional units. A search of the nucleotide sequence for restriction sites identified a small number of discrepancies with the previously published physical map of the BK5-T genome (G. Lakshmidevi, B. E. Davidson, and A. J. Hillier, Appl. Environ. Microbiol. 54:1039-1045, 1988). Subsequent analysis of restriction digests of BK5-T DNA which were heated prior to electrophoresis indicated that BK5-T DNA was not terminally redundant as previously reported but contained cohesive ends.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004270 DNA, Circular Any of the covalently closed DNA molecules found in bacteria, many viruses, mitochondria, plastids, and plasmids. Small, polydisperse circular DNA's have also been observed in a number of eukaryotic organisms and are suggested to have homology with chromosomal DNA and the capacity to be inserted into, and excised from, chromosomal DNA. It is a fragment of DNA formed by a process of looping out and deletion, containing a constant region of the mu heavy chain and the 3'-part of the mu switch region. Circular DNA is a normal product of rearrangement among gene segments encoding the variable regions of immunoglobulin light and heavy chains, as well as the T-cell receptor. (Riger et al., Glossary of Genetics, 5th ed & Segen, Dictionary of Modern Medicine, 1992) Circular DNA,Circular DNAs,DNAs, Circular
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001435 Bacteriophages Viruses whose hosts are bacterial cells. Phages,Bacteriophage,Phage
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

J D Boyce, and B E Davidson, and A J Hillier
November 1991, Applied and environmental microbiology,
J D Boyce, and B E Davidson, and A J Hillier
April 1973, Journal of molecular biology,
J D Boyce, and B E Davidson, and A J Hillier
May 1971, Journal of molecular biology,
J D Boyce, and B E Davidson, and A J Hillier
August 1970, Journal of molecular biology,
J D Boyce, and B E Davidson, and A J Hillier
February 1992, Molecular & general genetics : MGG,
J D Boyce, and B E Davidson, and A J Hillier
August 1968, Journal of molecular biology,
J D Boyce, and B E Davidson, and A J Hillier
July 2001, Journal of dairy science,
J D Boyce, and B E Davidson, and A J Hillier
August 1985, Journal of virology,
Copied contents to your clipboard!