Modulation of calcium channel currents by arachidonic acid in single smooth muscle cells from vas deferens of the guinea-pig. 1995

N Nagano, and Y Imaizumi, and M Watanabe
Department of Chemical Pharmacology, Faculty of Pharmacentical Science, Nagoya City University, Japan.

1. Effects of arachidonic acid (AA) on voltage-dependent Ca channel currents were investigated by whole-cell-clamp methods in single smooth muscle cells freshly isolated from vas deferens of the guinea-pig. 2. Ca channel current was decreased by application of 1-30 microM AA in a concentration-dependent manner. When Ca2+ or Ba2+ was the charge carrier, Ca channel current (ICa or IBa) was reduced by AA to a similar extent (IC50 = 10 and 6 microM, respectively). Addition of 15 mM BAPTA to the pipette solution did not affect the reduction of IBa by 10 microM AA. 3. The effect of AA on IBa was not prevented by internal application of 1 mM nordihydroguaiaretic acid (NDGA) and 1 mM indomethacin (Indo). When the pipette solution contained 0.1 mM guanosine-5'-triphosphate (GTP), IBa was decreased slightly but significantly by application of 30 microM prostaglandin F2 alpha (PGF2 alpha) but not by PGE2. This effect of PGF2 alpha was irreversible or not observed when the pipette solution contained 0.3 mM guanosine-5'-(3-thiotriphosphate) (GTP gamma S) or both GTP or guanosine-5'-O-(2-thiodiphosphate) (GDP beta S), respectively. 4. External application of 100 units ml-1 superoxide dismutase slightly but significantly attenuated the inhibition of IBa by 1-30 microM AA. Intracellular application of 1 mM GDP beta S or 0.3 mM GTP gamma S did not significantly change the effect of AA. Intracellular application of 0.1 mM 1-(5-isoquinolinesulphonyl)-2-methylepiperazine (H-7) also did not change the effect of AA. 5. These results indicate that the decrease in Ca channel currents in vas deferens smooth muscle cells is mainly due to AA itself, as opposed to its metabolites. The effect of AA may be due to AA itself, as opposed to its metabolites. The effect of AA may be due to its direct action on Ca channels or membrane phospholipids, but may not be mediated by activation of GTP binding proteins or protein kinase C. The inhibition of Ca channel current by AA may be partly induced by superoxide radicals derived from AA oxidation. PGF2A also reduces Ca channel currents but probably by a separate mechanism via activation of a GTP binding protein.

UI MeSH Term Description Entries
D008297 Male Males
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014649 Vas Deferens The excretory duct of the testes that carries SPERMATOZOA. It rises from the SCROTUM and joins the SEMINAL VESICLES to form the ejaculatory duct. Ductus Deferens,Deferens, Ductus,Deferens, Vas
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D015232 Dinoprostone The most common and most biologically active of the mammalian prostaglandins. It exhibits most biological activities characteristic of prostaglandins and has been used extensively as an oxytocic agent. The compound also displays a protective effect on the intestinal mucosa. PGE2,PGE2alpha,Prostaglandin E2,Prostaglandin E2alpha,PGE2 alpha,Prepidil Gel,Prostaglandin E2 alpha,Prostenon,E2 alpha, Prostaglandin,E2, Prostaglandin,E2alpha, Prostaglandin,Gel, Prepidil,alpha, PGE2,alpha, Prostaglandin E2

Related Publications

N Nagano, and Y Imaizumi, and M Watanabe
August 2004, The Journal of urology,
N Nagano, and Y Imaizumi, and M Watanabe
January 1973, Acta biochimica et biophysica; Academiae Scientiarum Hungaricae,
N Nagano, and Y Imaizumi, and M Watanabe
July 1978, Chemical & pharmaceutical bulletin,
N Nagano, and Y Imaizumi, and M Watanabe
January 1992, Japanese journal of pharmacology,
N Nagano, and Y Imaizumi, and M Watanabe
January 1991, Pflugers Archiv : European journal of physiology,
N Nagano, and Y Imaizumi, and M Watanabe
September 2005, The Journal of urology,
N Nagano, and Y Imaizumi, and M Watanabe
January 1984, Proceedings of the Western Pharmacology Society,
N Nagano, and Y Imaizumi, and M Watanabe
January 1991, The American journal of physiology,
N Nagano, and Y Imaizumi, and M Watanabe
July 1978, Cell and tissue research,
Copied contents to your clipboard!