Effect of site-specifically located aristolochic acid DNA adducts on in vitro DNA synthesis by human DNA polymerase alpha. 1995

T H Broschard, and M Wiessler, and H H Schmeiser
Division of Molecular Toxicology, German Cancer Research Center, Heidelberg, Germany.

In order to examine the effect of purine adducts of the plant carcinogen aristolochic acid (AA) on DNA replication four 30-mer templates were prepared which contained single site-specific AA lesions. The oligonucleotides were isolated by HPLC and shown to contain the two known aristolochic acid I-DNA adducts (dA-AAI, dG-AAI) or the two known aristolochic acid II-DNA adducts (dA-AAII, dG-AAII) at position 27 from the 3' end by 32P-postlabeling. These adducts templates were replicated in primer (23-mer) extension reactions catalysed by human DNA polymerase alpha. Both AAI-DNA adducts (dA-AAI, dG-AAI) blocked DNA synthesis predominantly (80-95%) at the nucleotide 3' to the adduct, although primer extension to the full length of the template was found with unmodified control templates. Increasing dNTP concentrations had only a small effect on the DNA synthesis and translesional synthesis was negligible. In contrast, both AAII-DNA adducts showed marked differences in primer extension reactions. Blocking of DNA synthesis by the dA-AAII adduct was strongly dNTP dependent. With increasing dNTP concentrations 27 and 28 nucleotide products, indicating termination of DNA synthesis after incorporation of a nucleotide opposite this adduct and incorporation of an additional nucleotide accumulated. Only the dG-AAII adducted template allowed substantial translesional synthesis to the full length of the template (up to 25%). When a 26-mer primer was used to examine nucleotide incorporation directly across from the four purine adducts, we found no detectable incorporation of nucleotides for the dA-AAI adduct, whereas the dG-AAI adduct and both AAII-adducts (dA-AAII and dG-AAII) allowed preferential incorporation of the correct nucleotide. These results indicate that for human polymerase alpha three AA purine adducts (dA-AAI, dG-AAI and dA-AAII) provide severe blocks to DNA replication and that dG-AAII, which allows translesional synthesis, may not be a very efficient mutagenic lesion.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D010616 Phenanthrenes POLYCYCLIC AROMATIC HYDROCARBONS composed of three fused BENZENE rings.
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D003854 Deoxyribonucleotides A purine or pyrimidine base bonded to a DEOXYRIBOSE containing a bond to a phosphate group. Deoxyribonucleotide
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004257 DNA Polymerase II A DNA-dependent DNA polymerase characterized in E. coli and other lower organisms. It may be present in higher organisms and has an intrinsic molecular activity only 5% of that of DNA Polymerase I. This polymerase has 3'-5' exonuclease activity, is effective only on duplex DNA with gaps or single-strand ends of less than 100 nucleotides as template, and is inhibited by sulfhydryl reagents. DNA Polymerase epsilon,DNA-Dependent DNA Polymerase II,DNA Pol II,DNA Dependent DNA Polymerase II
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

T H Broschard, and M Wiessler, and H H Schmeiser
January 2010, Nucleic acids research,
T H Broschard, and M Wiessler, and H H Schmeiser
February 2003, Biochemistry,
T H Broschard, and M Wiessler, and H H Schmeiser
January 2008, Chemistry (Weinheim an der Bergstrasse, Germany),
T H Broschard, and M Wiessler, and H H Schmeiser
August 2021, Archives of toxicology,
T H Broschard, and M Wiessler, and H H Schmeiser
January 1994, IARC scientific publications,
T H Broschard, and M Wiessler, and H H Schmeiser
May 2013, The Journal of biological chemistry,
T H Broschard, and M Wiessler, and H H Schmeiser
March 2014, DNA repair,
Copied contents to your clipboard!