Phosphorylation with protein kinases modulates calcium loading of terminal cisternae of sarcoplasmic reticulum from skeletal muscle. 1995

M Mayrleitner, and R Chandler, and H Schindler, and S Fleischer
Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee, USA.

We previously found in single channel studies that ryanodine receptor (RyR) channel activity can be made insensitive to block by Mg2+ when terminal cisternae of sarcoplasmic reticulum, incorporated into planar bilayers, are treated with protein kinase A (PKA) or Ca2+/calmodulin dependent protein kinase type II (CamPK II), and then again made sensitive by treatment with protein phosphatases [Hain J. Nath S. Mayrleitner M. Fleischer S. Schindler H. (1994) Phosphorylation modulates the function of the calcium release channel of sarcoplasmic reticulum from skeletal muscle. Biophys. J., 67, 1823-1833]. In this study, modulation by protein kinases and phosphatases on net Ca2+ uptake by TC is presented. Phosphorylation of TC vesicles with PKA, CamPK II, or protein kinase C (PKC) reduced the calcium loading rate of TC vesicles 3-fold, 2.1-fold and 1.7-fold, respectively, measured in the presence of 1 mM MgCl2. There is no effect when AMP-PNP is substituted for ATP. Phosphorylation of the RyR was also measured by incorporation of [gamma-32P]-phosphate from ATP. A phosphorylation stoichiometry of 1.94 +/- 0.1 (32P/RyR) for PKA, 0.89 +/- 0.08 for CamPK II and 0.95 +/- 0.16 for PKC was obtained under these conditions. A study of the time dependence of phosphorylation with PKA and CamPK shows a direct correlation of reduction in calcium loading rate with increased phosphorylation of the ryanodine receptor. Treatment with protein phosphatase 1 enhanced the calcium loading rate again, after it was reduced by PKA phosphorylation. Investigation of the magnesium dependency shows that even at higher [Mg2+] (6 mM), PKA phosphorylated TC vesicles have a 2.3-fold reduced calcium loading rate indicating insensitivity to block by Mg2+.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D010749 Phosphoprotein Phosphatases A group of enzymes removing the SERINE- or THREONINE-bound phosphate groups from a wide range of phosphoproteins, including a number of enzymes which have been phosphorylated under the action of a kinase. (Enzyme Nomenclature, 1992) Phosphoprotein Phosphatase,Phosphoprotein Phosphohydrolase,Protein Phosphatase,Protein Phosphatases,Casein Phosphatase,Ecto-Phosphoprotein Phosphatase,Nuclear Protein Phosphatase,Phosphohistone Phosphatase,Phosphoprotein Phosphatase-2C,Phosphoseryl-Protein Phosphatase,Protein Phosphatase C,Protein Phosphatase C-I,Protein Phosphatase C-II,Protein Phosphatase H-II,Protein-Serine-Threonine Phosphatase,Protein-Threonine Phosphatase,Serine-Threonine Phosphatase,Threonine Phosphatase,Ecto Phosphoprotein Phosphatase,Phosphatase C, Protein,Phosphatase C-I, Protein,Phosphatase C-II, Protein,Phosphatase H-II, Protein,Phosphatase, Casein,Phosphatase, Ecto-Phosphoprotein,Phosphatase, Nuclear Protein,Phosphatase, Phosphohistone,Phosphatase, Phosphoprotein,Phosphatase, Phosphoseryl-Protein,Phosphatase, Protein,Phosphatase, Protein-Serine-Threonine,Phosphatase, Protein-Threonine,Phosphatase, Serine-Threonine,Phosphatase, Threonine,Phosphatase-2C, Phosphoprotein,Phosphatases, Phosphoprotein,Phosphatases, Protein,Phosphohydrolase, Phosphoprotein,Phosphoprotein Phosphatase 2C,Phosphoseryl Protein Phosphatase,Protein Phosphatase C I,Protein Phosphatase C II,Protein Phosphatase H II,Protein Phosphatase, Nuclear,Protein Serine Threonine Phosphatase,Protein Threonine Phosphatase,Serine Threonine Phosphatase
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine
D000266 Adenylyl Imidodiphosphate 5'-Adenylic acid, monoanhydride with imidodiphosphoric acid. An analog of ATP, in which the oxygen atom bridging the beta to the gamma phosphate is replaced by a nitrogen atom. It is a potent competitive inhibitor of soluble and membrane-bound mitochondrial ATPase and also inhibits ATP-dependent reactions of oxidative phosphorylation. Adenyl Imidodiphosphate,gamma-Imino-ATP,AMP-PNP,AMPPNP,ATP(beta,gamma-NH),Adenosine 5'-(beta,gamma-Imino)triphosphate,Adenylimidodiphosphate,Adenylylimidodiphosphate,Mg AMP-PNP,Mg-5'-Adenylylimidodiphosphate,beta,gamma-imido-ATP,gamma-Imido-ATP,AMP-PNP, Mg,Imidodiphosphate, Adenyl,Imidodiphosphate, Adenylyl,Mg 5' Adenylylimidodiphosphate,Mg AMP PNP,beta,gamma imido ATP,gamma Imido ATP,gamma Imino ATP
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Mayrleitner, and R Chandler, and H Schindler, and S Fleischer
October 1981, FEBS letters,
M Mayrleitner, and R Chandler, and H Schindler, and S Fleischer
September 1984, The Journal of cell biology,
M Mayrleitner, and R Chandler, and H Schindler, and S Fleischer
December 1986, Biochemistry,
M Mayrleitner, and R Chandler, and H Schindler, and S Fleischer
October 1982, Journal of biochemistry,
M Mayrleitner, and R Chandler, and H Schindler, and S Fleischer
November 1994, Biophysical journal,
M Mayrleitner, and R Chandler, and H Schindler, and S Fleischer
June 1985, The Journal of biological chemistry,
M Mayrleitner, and R Chandler, and H Schindler, and S Fleischer
March 1997, The Journal of biological chemistry,
M Mayrleitner, and R Chandler, and H Schindler, and S Fleischer
January 1988, Methods in enzymology,
M Mayrleitner, and R Chandler, and H Schindler, and S Fleischer
April 1984, The Journal of biological chemistry,
M Mayrleitner, and R Chandler, and H Schindler, and S Fleischer
January 1989, The International journal of biochemistry,
Copied contents to your clipboard!