The S. cerevisiae nuclear gene SUV3 encoding a putative RNA helicase is necessary for the stability of mitochondrial transcripts containing multiple introns. 1995

P Golik, and T Szczepanek, and E Bartnik, and P P Stepien, and J Lazowska
Centre de Génétique Moléculaire du CNRS, Yvette, France.

The product of the nuclear gene SUV3 is implicated in a variety of post-transcriptional processes in yeast mitochondria. We have analysed the effect of SUV3 gene-disruption on the expression of intron-containing alleles of the mitochondrial cytb and cox1 genes. We have constructed several strains with mitochondrial genomes containing different combinations of cytb and cox1 introns, and associated these genomes with the disruption of SUV3. The resulting strains were tested for their respiratory competence and spectral cytochrome content. All the strains containing only two or three introns showed normal expression of cytb and cox1, whereas the strains containing more introns were unable to express the appropriate gene. The analysis of mitochondrial RNAs by Northern hybridisation showed that the loss of respiratory competence in the strains containing more introns is due to the decrease of mRNA level with no over-accumulation of high-molecular-weight precursors. However, the transcription of the genes was not affected. These results led us to the notion that SUV3 is required for the stability of intron-containing cytb and cox1 transcripts in a cumulative way, not dependent on any particular intron.

UI MeSH Term Description Entries
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D002244 Carbon A nonmetallic element with atomic symbol C, atomic number 6, and atomic weight [12.0096; 12.0116]. It may occur as several different allotropes including DIAMOND; CHARCOAL; and GRAPHITE; and as SOOT from incompletely burned fuel. Carbon-12,Vitreous Carbon,Carbon 12,Carbon, Vitreous
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003573 Cytochrome b Group Cytochromes (electron-transporting proteins) with protoheme (HEME B) as the prosthetic group. Cytochromes Type b,Cytochromes, Heme b,Group, Cytochrome b,Heme b Cytochromes,Type b, Cytochromes,b Cytochromes, Heme,b Group, Cytochrome
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal

Related Publications

P Golik, and T Szczepanek, and E Bartnik, and P P Stepien, and J Lazowska
August 1992, Proceedings of the National Academy of Sciences of the United States of America,
P Golik, and T Szczepanek, and E Bartnik, and P P Stepien, and J Lazowska
September 2015, Nucleic acids research,
P Golik, and T Szczepanek, and E Bartnik, and P P Stepien, and J Lazowska
January 1999, Acta biochimica Polonica,
P Golik, and T Szczepanek, and E Bartnik, and P P Stepien, and J Lazowska
January 1980, Nucleic acids research,
P Golik, and T Szczepanek, and E Bartnik, and P P Stepien, and J Lazowska
February 1995, Current genetics,
P Golik, and T Szczepanek, and E Bartnik, and P P Stepien, and J Lazowska
November 2002, Yeast (Chichester, England),
P Golik, and T Szczepanek, and E Bartnik, and P P Stepien, and J Lazowska
November 2011, The Journal of biological chemistry,
P Golik, and T Szczepanek, and E Bartnik, and P P Stepien, and J Lazowska
December 2006, Experimental and molecular pathology,
P Golik, and T Szczepanek, and E Bartnik, and P P Stepien, and J Lazowska
March 1997, Yeast (Chichester, England),
P Golik, and T Szczepanek, and E Bartnik, and P P Stepien, and J Lazowska
January 2007, Mechanisms of ageing and development,
Copied contents to your clipboard!