DNA ploidy and proliferation heterogeneity in human prostate cancers. 1995

T V Shankey, and J K Jin, and S Dougherty, and R C Flanigan, and S Graham, and J M Pyle
Department of Urology, Loyola University Medical Center, Maywood, IL 60153, USA.

DNA ploidy determinations have been shown to have clinical application in predicting disease progression, survival, or response to anti-androgen therapies in prostate carcinomas. Since intra-tumor heterogeneity may have a profound effect on DNA measurements, we determined the frequency of DNA ploidy and proliferation (here S-phase fraction) heterogeneity in early prostatic carcinomas, and estimated the potential impact of heterogeneity on predicting disease course, survival, or response to therapy. Using image and flow cytometric analysis of archival, paraffin-embedded prostate tumors, we measured DNA ploidy in individual foci of prostatic carcinoma in stage T1a, T1b and T1c disease. Image analysis studies included the use of Feulgen stained tissue sections, and a comparison of these results with flow cytometric DNA ploidy determinations on nuclei isolated from the same tumor foci. Flow cytometry was also used to measure DNA Index and tumor S-phase fraction, in some cases using multiparameter analysis of isolated nuclei to determine DNA content and the level of the proliferation-associated antigen, p105. Our results indicate that DNA aneuploid foci of prostate carcinoma are infrequently seen in stage T1a disease (13% of the individuals studied), and that the presence of both DNA diploid and aneuploid foci in the same sample is seen in less than 10% of these individuals. Stage T1b and T1c tumors containing only DNA diploid nuclei are seen, though these are likely most common in low volume, low Gleason grade tumors. By using flow cytometry to compare these results with those using image analysis of the same tumor foci, we demonstrated that the majority (> 75%) of these aneuploid tumors are DNA tetraploid. Our data on prostate tumor S-phase fractions indicate that DNA diploid tumors generally have a lower S-phase than DNA aneuploid foci (including comparisons of DNA diploid and aneuploid foci in the same prostate tumor). These results support the model that early prostate tumors are DNA diploid and have a low S-phase, and that these tumors likely evolve to DNA tetraploid tumors with a similar low S-phase fraction.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D008297 Male Males
D011003 Ploidies The degree of replication of the chromosome set in the karyotype. Ploidy
D011468 Prostatectomy Complete or partial surgical removal of the prostate. Three primary approaches are commonly employed: suprapubic - removal through an incision above the pubis and through the urinary bladder; retropubic - as for suprapubic but without entering the urinary bladder; and transurethral (TRANSURETHRAL RESECTION OF PROSTATE). Prostatectomy, Retropubic,Prostatectomy, Suprapubic,Prostatectomies,Prostatectomies, Retropubic,Prostatectomies, Suprapubic,Retropubic Prostatectomies,Retropubic Prostatectomy,Suprapubic Prostatectomies,Suprapubic Prostatectomy
D011471 Prostatic Neoplasms Tumors or cancer of the PROSTATE. Cancer of Prostate,Prostate Cancer,Cancer of the Prostate,Neoplasms, Prostate,Neoplasms, Prostatic,Prostate Neoplasms,Prostatic Cancer,Cancer, Prostate,Cancer, Prostatic,Cancers, Prostate,Cancers, Prostatic,Neoplasm, Prostate,Neoplasm, Prostatic,Prostate Cancers,Prostate Neoplasm,Prostatic Cancers,Prostatic Neoplasm
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

T V Shankey, and J K Jin, and S Dougherty, and R C Flanigan, and S Graham, and J M Pyle
January 2008, Cellular oncology : the official journal of the International Society for Cellular Oncology,
T V Shankey, and J K Jin, and S Dougherty, and R C Flanigan, and S Graham, and J M Pyle
June 1996, Cytometry,
T V Shankey, and J K Jin, and S Dougherty, and R C Flanigan, and S Graham, and J M Pyle
February 1993, Analytical and quantitative cytology and histology,
T V Shankey, and J K Jin, and S Dougherty, and R C Flanigan, and S Graham, and J M Pyle
January 1999, Analytical cellular pathology : the journal of the European Society for Analytical Cellular Pathology,
T V Shankey, and J K Jin, and S Dougherty, and R C Flanigan, and S Graham, and J M Pyle
May 1994, Gan to kagaku ryoho. Cancer & chemotherapy,
T V Shankey, and J K Jin, and S Dougherty, and R C Flanigan, and S Graham, and J M Pyle
December 2023, Cancer reports (Hoboken, N.J.),
T V Shankey, and J K Jin, and S Dougherty, and R C Flanigan, and S Graham, and J M Pyle
July 2000, Clinical cancer research : an official journal of the American Association for Cancer Research,
T V Shankey, and J K Jin, and S Dougherty, and R C Flanigan, and S Graham, and J M Pyle
March 1992, Analytical cellular pathology : the journal of the European Society for Analytical Cellular Pathology,
T V Shankey, and J K Jin, and S Dougherty, and R C Flanigan, and S Graham, and J M Pyle
January 1982, Klinische Padiatrie,
T V Shankey, and J K Jin, and S Dougherty, and R C Flanigan, and S Graham, and J M Pyle
January 2005, Scandinavian journal of urology and nephrology,
Copied contents to your clipboard!