Importance of ribonucleotide availability to proliferating T-lymphocytes from healthy humans. Disproportionate expansion of pyrimidine pools and contrasting effects of de novo synthesis inhibitors. 1995

L D Fairbanks, and M Bofill, and K Ruckemann, and H A Simmonds
Purine Research Laboratory, United Medical School, Guy's Hospital, London, United Kingdom.

Sensitive high performance liquid chromatography techniques, which differentiate between purine and pyrimidine ribonucleoside and deoxyribonucleoside triphosphates, were used to quantify pools in phytohemagglutinin-stimulated T-lymphocytes (98% CD4+ and CD8+) from healthy volunteers. The importance of de novo synthesis and salvage was evaluated by incubating the cells with 14C-radiolabeled precursors (40 microM), azaserine (20 microM; a glutamine antagonist), and ribavirin (50 microM; an IMP dehydrogenase inhibitor). We confirmed that resting T-lymphocytes meet their metabolic requirements by salvage. Noteworthy observations were as follows. First, nucleotide pool expansion over 72 h is disproportionate, with that for purines (ATP and GTP) being 2-fold compared with up to 8-fold for pyridine (NAD) or pyrimidine (UTP, UDP-Glc, and CTP) pools. This supports an additional role for the latter in membrane lipid biosynthesis, protein glycosylation, and strand break repair. Second, intact de novo pathways are essential for such expansion. Azaserine not only inhibited purine synthesis (confirmed by N-formylglycinamide polyphosphate accumulation), but also reduced expansion of pyrimidine and NAD pools by 70%. Ribavirin depleted GTP pools by 40% and reduced pyrimidine pool expansion by 40% at 72 h. These findings underline the importance of pyrimidine ribonucleotide availability as well as GTP synthesis de novo to proliferating T-lymphocytes. They also demonstrate an absence of coordinate regulation between de novo purine and pyrimidine biosynthesis.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010835 Phytohemagglutinins Mucoproteins isolated from the kidney bean (Phaseolus vulgaris); some of them are mitogenic to lymphocytes, others agglutinate all or certain types of erythrocytes or lymphocytes. They are used mainly in the study of immune mechanisms and in cell culture. Kidney Bean Lectin,Kidney Bean Lectins,Lectins, Kidney Bean,Phaseolus vulgaris Lectin,Phaseolus vulgaris Lectins,Phytohemagglutinin,Hemagglutinins, Plant,Lectin, Kidney Bean,Lectin, Phaseolus vulgaris,Lectins, Phaseolus vulgaris,Plant Hemagglutinins
D011684 Purine Nucleosides Purines with a RIBOSE attached that can be phosphorylated to PURINE NUCLEOTIDES. Purine Nucleoside,Nucleoside, Purine,Nucleosides, Purine
D011685 Purine Nucleotides Purines attached to a RIBOSE and a phosphate that can polymerize to form DNA and RNA. Nucleotides, Purine
D011741 Pyrimidine Nucleosides Pyrimidines with a RIBOSE attached that can be phosphorylated to PYRIMIDINE NUCLEOTIDES. Nucleosides, Pyrimidine
D011742 Pyrimidine Nucleotides Pyrimidines with a RIBOSE and phosphate attached that can polymerize to form DNA and RNA. Nucleotides, Pyrimidine
D011865 Radioisotope Dilution Technique Method for assessing flow through a system by injection of a known quantity of radionuclide into the system and monitoring its concentration over time at a specific point in the system. (From Dorland, 28th ed) Radioisotope Dilution Technic,Dilution Technic, Radioisotope,Dilution Technics, Radioisotope,Dilution Technique, Radioisotope,Dilution Techniques, Radioisotope,Radioisotope Dilution Technics,Radioisotope Dilution Techniques,Technic, Radioisotope Dilution,Technics, Radioisotope Dilution,Technique, Radioisotope Dilution,Techniques, Radioisotope Dilution
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference

Related Publications

L D Fairbanks, and M Bofill, and K Ruckemann, and H A Simmonds
August 1998, The Journal of biological chemistry,
L D Fairbanks, and M Bofill, and K Ruckemann, and H A Simmonds
January 2024, Heliyon,
L D Fairbanks, and M Bofill, and K Ruckemann, and H A Simmonds
November 1982, FEBS letters,
L D Fairbanks, and M Bofill, and K Ruckemann, and H A Simmonds
June 1993, Transplantation proceedings,
L D Fairbanks, and M Bofill, and K Ruckemann, and H A Simmonds
September 1981, Cancer research,
L D Fairbanks, and M Bofill, and K Ruckemann, and H A Simmonds
January 2013, Methods in molecular biology (Clifton, N.J.),
L D Fairbanks, and M Bofill, and K Ruckemann, and H A Simmonds
May 1994, Biochemistry,
L D Fairbanks, and M Bofill, and K Ruckemann, and H A Simmonds
May 1963, Cancer research,
L D Fairbanks, and M Bofill, and K Ruckemann, and H A Simmonds
January 2018, Nucleosides, nucleotides & nucleic acids,
L D Fairbanks, and M Bofill, and K Ruckemann, and H A Simmonds
January 1986, Advances in experimental medicine and biology,
Copied contents to your clipboard!